Charles McGrath, Pietro Dirix, Vincent Vousten, Jouke Smink, Ece Ercan, Peter Börnert, Sebastian Kozerke
{"title":"Referenceless 4D flow MRI using radial balanced SSFP at 0.6 T.","authors":"Charles McGrath, Pietro Dirix, Vincent Vousten, Jouke Smink, Ece Ercan, Peter Börnert, Sebastian Kozerke","doi":"10.1002/mrm.30503","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To implement four-dimensional-flow MRI using phase-contrast balanced steady-state free precession (bSSFP) at 0.6 T using a free-running three-dimensional (3D) radial trajectory and referenceless background phase correction.</p><p><strong>Methods: </strong>A free-running, wobbling Archimedean spiral approach including bipolar velocity-encoding gradients (3D PC-bSSFP) was implemented on a 0.6T prototype scanner. Bipolar rewinder gradients were added to ensure first-moment nulling per repetition time. Velocity encoding was performed using a three-point encoding scheme (i.e., omitting a reference measurement). Advanced computer simulations were carried out to validate the approach. Image reconstruction was performed using a locally low-rank approach. Results for anatomical visualization and flow quantification were reconstructed separately with different regularization factors. Background phase correction was achieved using phase estimation on time-averaged reconstructions. In vivo data were acquired in 6 healthy subjects during free breathing. Additional two-dimensional (2D) phase-contrast spoiled gradient-echo (2D PC-GRE) breath-hold data were obtained for reference to compare flow values in the ascending aorta, descending aorta, and pulmonary trunk.</p><p><strong>Results: </strong>Velocity data acquired with 3D PC-bSSFP compared well with 2D PC-GRE (root mean square error = 3.96 cm/s), with minor underestimation of velocities (-0.52 cm/s). Cardiac phase-dependent signal-to-noise ratios normalized for differences in scan time and resolution between 3D PC-bSSFP and 2D PC-GRE demonstrate relatively steady values for 3D PC-bSSFP when compared to 2D PC-bSSFP with some reduction during phases of high flow.</p><p><strong>Conclusion: </strong>Free-running, referenceless, four-dimensional-flow MRI using radial 3D PC-bSSFP is feasible on a lower-field 0.6T system, producing adequate flow quantification while yielding simultaneously reasonable cine images for concurrent flow and functional assessment of the heart and great vessels.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30503","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To implement four-dimensional-flow MRI using phase-contrast balanced steady-state free precession (bSSFP) at 0.6 T using a free-running three-dimensional (3D) radial trajectory and referenceless background phase correction.
Methods: A free-running, wobbling Archimedean spiral approach including bipolar velocity-encoding gradients (3D PC-bSSFP) was implemented on a 0.6T prototype scanner. Bipolar rewinder gradients were added to ensure first-moment nulling per repetition time. Velocity encoding was performed using a three-point encoding scheme (i.e., omitting a reference measurement). Advanced computer simulations were carried out to validate the approach. Image reconstruction was performed using a locally low-rank approach. Results for anatomical visualization and flow quantification were reconstructed separately with different regularization factors. Background phase correction was achieved using phase estimation on time-averaged reconstructions. In vivo data were acquired in 6 healthy subjects during free breathing. Additional two-dimensional (2D) phase-contrast spoiled gradient-echo (2D PC-GRE) breath-hold data were obtained for reference to compare flow values in the ascending aorta, descending aorta, and pulmonary trunk.
Results: Velocity data acquired with 3D PC-bSSFP compared well with 2D PC-GRE (root mean square error = 3.96 cm/s), with minor underestimation of velocities (-0.52 cm/s). Cardiac phase-dependent signal-to-noise ratios normalized for differences in scan time and resolution between 3D PC-bSSFP and 2D PC-GRE demonstrate relatively steady values for 3D PC-bSSFP when compared to 2D PC-bSSFP with some reduction during phases of high flow.
Conclusion: Free-running, referenceless, four-dimensional-flow MRI using radial 3D PC-bSSFP is feasible on a lower-field 0.6T system, producing adequate flow quantification while yielding simultaneously reasonable cine images for concurrent flow and functional assessment of the heart and great vessels.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.