{"title":"Stereospecific molecular rearrangement via nucleophilic substitution at quaternary stereocentres in acyclic systems.","authors":"Kaushalendra Patel, Ilan Marek","doi":"10.1038/s41557-025-01783-2","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleophilic substitution at tetravalent (sp<sup>3</sup>) carbon is a fundamental transformation in organic synthesis, essential for creating carbon-carbon and carbon-heteroatom bonds. While the mechanism of the S<sub>N</sub>2 reaction is well understood, achieving stereochemical control in S<sub>N</sub>1-type reactions remains extremely challenging due to the complexity of successive carbocation intermediates. Here we present a strategy for preparing complex molecular skeletons via stereospecific S<sub>N</sub>1 at a quaternary stereocentre in acyclic systems. By leveraging neighbouring group participation, we facilitate the selective formation of a unique cyclopropylcarbinyl cation intermediate that undergoes selective nucleophilic substitution with high diastereoselectivity and complete inversion of configuration at a distant position from the original carbocation via molecular rearrangement. This methodology has been applied to generate homoallylic tertiary fluorides, bromides, chlorides, ethers, thiocyanates and azides, demonstrating its applicability in accessing diverse functional groups with exceptional diastereoselectivities. This transformation opens new avenues for constructing complex molecular architectures through precise stereocontrol of C-C bond cleavage at a quaternary stereocentre in acyclic systems.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":" ","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01783-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleophilic substitution at tetravalent (sp3) carbon is a fundamental transformation in organic synthesis, essential for creating carbon-carbon and carbon-heteroatom bonds. While the mechanism of the SN2 reaction is well understood, achieving stereochemical control in SN1-type reactions remains extremely challenging due to the complexity of successive carbocation intermediates. Here we present a strategy for preparing complex molecular skeletons via stereospecific SN1 at a quaternary stereocentre in acyclic systems. By leveraging neighbouring group participation, we facilitate the selective formation of a unique cyclopropylcarbinyl cation intermediate that undergoes selective nucleophilic substitution with high diastereoselectivity and complete inversion of configuration at a distant position from the original carbocation via molecular rearrangement. This methodology has been applied to generate homoallylic tertiary fluorides, bromides, chlorides, ethers, thiocyanates and azides, demonstrating its applicability in accessing diverse functional groups with exceptional diastereoselectivities. This transformation opens new avenues for constructing complex molecular architectures through precise stereocontrol of C-C bond cleavage at a quaternary stereocentre in acyclic systems.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.