Multidrug-Resistant Uropathogens in Companion Animals: A Comprehensive Study from Clinical Cases and a Genomic Analysis of a CTX-M-14-Producing Escherichia coli ST354, a Leading Cause of Urinary Tract Infections.
Victoria T S Sakauchi, Bianca C T Silva, Amanda Haisi, João P Araújo Júnior, José S Ferreira Neto, Marcos B Heinemann, Natália C Gaeta
{"title":"Multidrug-Resistant Uropathogens in Companion Animals: A Comprehensive Study from Clinical Cases and a Genomic Analysis of a CTX-M-14-Producing <i>Escherichia coli</i> ST354, a Leading Cause of Urinary Tract Infections.","authors":"Victoria T S Sakauchi, Bianca C T Silva, Amanda Haisi, João P Araújo Júnior, José S Ferreira Neto, Marcos B Heinemann, Natália C Gaeta","doi":"10.1089/mdr.2024.0208","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary tract infections (UTIs) are common in small animals, posing significant clinical challenges due to their recurrence and discomfort. This study investigated the bacterial causes and antimicrobial resistance patterns of UTIs in dogs and cats presented to an important Veterinary Teaching Hospital in São Paulo, Brazil, the largest city in Latin America. Samples were collected from 31 dogs and 9 cats via ultrasound-guided cystocentesis. Bacterial cultures were performed, species identification was accomplished with matrix-assisted laser desorption ionization-time of flight mass spectrometry, and antimicrobial susceptibility testing was done using the Kirby-Bauer method. <i>Escherichia coli</i> was the most frequently isolated pathogen, accounting for 27.9% of cases, followed by <i>Staphylococcus pseudintermedius</i>, <i>Proteus mirabilis</i>, and <i>Klebsiella pneumoniae</i>. Ampicillin resistance was observed in 70.4% of enterobacteria, with many <i>E. coli</i> strains exhibiting multidrug resistance. Whole-genome sequencing of an extended-spectrum beta-lactamase-producing uropathogenic <i>Escherichia coli</i> strain from a feline patient was performed; it was identified as ST354, a leading cause of UTIs worldwide in humans and animals, carrying the <i>bla</i><sub>CTX-M-14</sub> gene and other resistance determinants. Phylogenetic analysis indicated genetic proximity between this strain and others from Brazilian poultry and environmental sources. These findings emphasize the need for antimicrobial resistance surveillance in veterinary UTIs and advocate for stricter antibiotic stewardship to inform diagnostic and therapeutic approaches within a One Health perspective.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0208","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Urinary tract infections (UTIs) are common in small animals, posing significant clinical challenges due to their recurrence and discomfort. This study investigated the bacterial causes and antimicrobial resistance patterns of UTIs in dogs and cats presented to an important Veterinary Teaching Hospital in São Paulo, Brazil, the largest city in Latin America. Samples were collected from 31 dogs and 9 cats via ultrasound-guided cystocentesis. Bacterial cultures were performed, species identification was accomplished with matrix-assisted laser desorption ionization-time of flight mass spectrometry, and antimicrobial susceptibility testing was done using the Kirby-Bauer method. Escherichia coli was the most frequently isolated pathogen, accounting for 27.9% of cases, followed by Staphylococcus pseudintermedius, Proteus mirabilis, and Klebsiella pneumoniae. Ampicillin resistance was observed in 70.4% of enterobacteria, with many E. coli strains exhibiting multidrug resistance. Whole-genome sequencing of an extended-spectrum beta-lactamase-producing uropathogenic Escherichia coli strain from a feline patient was performed; it was identified as ST354, a leading cause of UTIs worldwide in humans and animals, carrying the blaCTX-M-14 gene and other resistance determinants. Phylogenetic analysis indicated genetic proximity between this strain and others from Brazilian poultry and environmental sources. These findings emphasize the need for antimicrobial resistance surveillance in veterinary UTIs and advocate for stricter antibiotic stewardship to inform diagnostic and therapeutic approaches within a One Health perspective.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.