NEK2 promotes the progression of osteosarcoma through the AKT/p-AKT pathway and interacts with FoxM1.

IF 2.8 4区 医学 Q2 ONCOLOGY Medical Oncology Pub Date : 2025-03-19 DOI:10.1007/s12032-025-02657-w
Xin Tan, Xiaojing Liang, Yi Feng, Ming Xie, Kun Zhong, Wenwu Luo, Yurao Wang, Yu Yin, Yongping Cai
{"title":"NEK2 promotes the progression of osteosarcoma through the AKT/p-AKT pathway and interacts with FoxM1.","authors":"Xin Tan, Xiaojing Liang, Yi Feng, Ming Xie, Kun Zhong, Wenwu Luo, Yurao Wang, Yu Yin, Yongping Cai","doi":"10.1007/s12032-025-02657-w","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma is a highly invasive and metastatic primary malignant bone tumor, and resistance to chemotherapy remains a major therapeutic challenge. Our previous studies showed that increased Forkhead box protein M1 (FoxM1) expression promotes osteosarcoma progression. While NIMA-related kinase 2 (NEK2) has emerged as a potential oncogenic factor, its functional role and molecular mechanisms in osteosarcoma remain poorly understood. Pearson's correlation analysis was performed to assess the relationship between FoxM1 and NEK2 expression using the GSE33382 dataset from GEO. Coimmunoprecipitation (Co-IP) was employed to investigate FoxM1-NEK2 interactions. NEK2 expression was modulated in the HOS and U2OS osteosarcoma cell lines through pharmacological inhibition (MBM-55), siRNA-mediated knockdown, and plasmid-mediated overexpression. Cellular proliferation was evaluated via CCK-8 and colony formation assays. Transwell migration/invasion assays and flow cytometry were performed to assess the metastatic potential and apoptosis, respectively. The protein levels of FoxM1, NEK2, and AKT/p-AKT were analyzed by Western blotting. Western blot analyses of FoxM1-overexpressing cell lines and RCM-1-treated cells revealed a positive correlation between NEK2 and FoxM1 levels. Co-IP confirmed their interaction. NEK2 knockdown significantly suppressed proliferation, migration, and invasion; enhanced cisplatin sensitivity (reduced the IC<sub>50</sub>); and promoted apoptosis. Conversely, NEK2 overexpression exacerbated malignant phenotypes and decreased chemosensitivity. Mechanistically, NEK2 activation was shown to drive osteosarcoma progression via AKT/p-AKT pathway activation. This study revealed that NEK2 promotes osteosarcoma proliferation, invasion, migration, and chemoresistance while inhibiting apoptosis, likely through AKT/p-AKT signaling. These effects may be regulated by FoxM1.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 4","pages":"120"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02657-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma is a highly invasive and metastatic primary malignant bone tumor, and resistance to chemotherapy remains a major therapeutic challenge. Our previous studies showed that increased Forkhead box protein M1 (FoxM1) expression promotes osteosarcoma progression. While NIMA-related kinase 2 (NEK2) has emerged as a potential oncogenic factor, its functional role and molecular mechanisms in osteosarcoma remain poorly understood. Pearson's correlation analysis was performed to assess the relationship between FoxM1 and NEK2 expression using the GSE33382 dataset from GEO. Coimmunoprecipitation (Co-IP) was employed to investigate FoxM1-NEK2 interactions. NEK2 expression was modulated in the HOS and U2OS osteosarcoma cell lines through pharmacological inhibition (MBM-55), siRNA-mediated knockdown, and plasmid-mediated overexpression. Cellular proliferation was evaluated via CCK-8 and colony formation assays. Transwell migration/invasion assays and flow cytometry were performed to assess the metastatic potential and apoptosis, respectively. The protein levels of FoxM1, NEK2, and AKT/p-AKT were analyzed by Western blotting. Western blot analyses of FoxM1-overexpressing cell lines and RCM-1-treated cells revealed a positive correlation between NEK2 and FoxM1 levels. Co-IP confirmed their interaction. NEK2 knockdown significantly suppressed proliferation, migration, and invasion; enhanced cisplatin sensitivity (reduced the IC50); and promoted apoptosis. Conversely, NEK2 overexpression exacerbated malignant phenotypes and decreased chemosensitivity. Mechanistically, NEK2 activation was shown to drive osteosarcoma progression via AKT/p-AKT pathway activation. This study revealed that NEK2 promotes osteosarcoma proliferation, invasion, migration, and chemoresistance while inhibiting apoptosis, likely through AKT/p-AKT signaling. These effects may be regulated by FoxM1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
期刊最新文献
ADAM9 mediates Cisplatin resistance in gastric cancer cells through DNA damage response pathway. Integrative analysis of ubiquitination-related genes identifies HSPA1A as a critical regulator in colorectal cancer progression. An investigative study on the impact of DLK1 and NCoR1 knockdown by siRNA transfection on endometrial cancer proliferation: unveiling notch interactions. Addition of thalidomide for prevention of chemotherapy-induced nausea and vomiting in the second cycle after the failure of four-drug regimen in the first cycle. Isoliquiritigenin attenuates tumor progression and PD-L1 expression by inhibiting the phosphorylation of STAT3 in melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1