Prediction and analysis of tumor infiltrating lymphocytes across 28 cancers by TILScout using deep learning.

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2025-03-19 DOI:10.1038/s41698-025-00866-0
Huibo Zhang, Lulu Chen, Lan Li, Yang Liu, Barnali Das, Shuang Zhai, Juan Tan, Yan Jiang, Simona Turco, Yi Yao, Dmitrij Frishman
{"title":"Prediction and analysis of tumor infiltrating lymphocytes across 28 cancers by TILScout using deep learning.","authors":"Huibo Zhang, Lulu Chen, Lan Li, Yang Liu, Barnali Das, Shuang Zhai, Juan Tan, Yan Jiang, Simona Turco, Yi Yao, Dmitrij Frishman","doi":"10.1038/s41698-025-00866-0","DOIUrl":null,"url":null,"abstract":"<p><p>The density of tumor-infiltrating lymphocytes (TILs) serves as a valuable indicator for predicting anti-tumor responses, but its broad impact across various types of cancers remains underexplored. We introduce TILScout, a pan-cancer deep-learning approach to compute patch-level TIL scores from whole slide images (WSIs). TILScout achieved accuracies of 0.9787 and 0.9628, and AUCs of 0.9988 and 0.9934 in classifying WSI patches into three categories-TIL-positive, TIL-negative, and other/necrotic-on validation and independent test sets, respectively, surpassing previous studies. The biological significance of TILScout-derived TIL scores across 28 cancers was validated through comprehensive functional and correlational analyses. A consistent decrease in TIL scores with an increase in cancer stage provides direct evidence that the lower TIL content may stimulate cancer progression. Additionally, TIL scores correlated with immune checkpoint gene expression and genomic variation in common cancer driver genes. Our comprehensive pan-cancer survey highlights the critical prognostic significance of TILs within the tumor microenvironment.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"76"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00866-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The density of tumor-infiltrating lymphocytes (TILs) serves as a valuable indicator for predicting anti-tumor responses, but its broad impact across various types of cancers remains underexplored. We introduce TILScout, a pan-cancer deep-learning approach to compute patch-level TIL scores from whole slide images (WSIs). TILScout achieved accuracies of 0.9787 and 0.9628, and AUCs of 0.9988 and 0.9934 in classifying WSI patches into three categories-TIL-positive, TIL-negative, and other/necrotic-on validation and independent test sets, respectively, surpassing previous studies. The biological significance of TILScout-derived TIL scores across 28 cancers was validated through comprehensive functional and correlational analyses. A consistent decrease in TIL scores with an increase in cancer stage provides direct evidence that the lower TIL content may stimulate cancer progression. Additionally, TIL scores correlated with immune checkpoint gene expression and genomic variation in common cancer driver genes. Our comprehensive pan-cancer survey highlights the critical prognostic significance of TILs within the tumor microenvironment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的TILScout对28种肿瘤浸润淋巴细胞的预测和分析。
肿瘤浸润淋巴细胞(til)的密度是预测抗肿瘤反应的一个有价值的指标,但其对各种类型癌症的广泛影响仍未得到充分探讨。我们介绍了TILScout,这是一种泛癌症深度学习方法,用于从整个幻灯片图像(wsi)中计算补丁级TIL分数。在验证集和独立测试集上,TILScout将WSI斑块分为til阳性、til阴性和其他/坏死3类,准确率分别为0.9787和0.9628,auc分别为0.9988和0.9934,超过了以往的研究。通过综合功能分析和相关分析,验证了tilscout衍生的28种癌症TIL评分的生物学意义。随着癌症分期的增加,TIL评分持续下降,这提供了直接证据,表明较低的TIL含量可能会刺激癌症进展。此外,TIL评分与免疫检查点基因表达和常见癌症驱动基因的基因组变异相关。我们全面的泛癌症调查强调了肿瘤微环境中TILs的关键预后意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Y chromosome-linked EIF1AY deletion drives sex differences in multiple myeloma. Complete remission of relapsed ATXN2L::JAK2 fusion positive anaplastic large cell lymphoma following ruxolitinib monotherapy in a child. AI accelerate the identification of druggable targets by 3D structures of proteins and compounds. Developing virtual physiology of human tumor tissue for malignancy assessment. Kinic index: an artificial intelligence-driven predictive model and multitarget drug discovery framework for hepatocellular carcinoma patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1