Machine learning-based scoring system to predict cardiogenic shock in acute coronary syndrome.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2025-01-06 eCollection Date: 2025-03-01 DOI:10.1093/ehjdh/ztaf002
Allan Böhm, Amitai Segev, Nikola Jajcay, Konstantin A Krychtiuk, Guido Tavazzi, Michael Spartalis, Marta Kollarova, Imrich Berta, Jana Jankova, Frederico Guerra, Edita Pogran, Andrej Remak, Milana Jarakovic, Viera Sebenova Jerigova, Katarina Petrikova, Shlomi Matetzky, Carsten Skurk, Kurt Huber, Branislav Bezak
{"title":"Machine learning-based scoring system to predict cardiogenic shock in acute coronary syndrome.","authors":"Allan Böhm, Amitai Segev, Nikola Jajcay, Konstantin A Krychtiuk, Guido Tavazzi, Michael Spartalis, Marta Kollarova, Imrich Berta, Jana Jankova, Frederico Guerra, Edita Pogran, Andrej Remak, Milana Jarakovic, Viera Sebenova Jerigova, Katarina Petrikova, Shlomi Matetzky, Carsten Skurk, Kurt Huber, Branislav Bezak","doi":"10.1093/ehjdh/ztaf002","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Cardiogenic shock (CS) is a severe complication of acute coronary syndrome (ACS) with mortality rates approaching 50%. The ability to identify high-risk patients prior to the development of CS may allow for pre-emptive measures to prevent the development of CS. The objective was to derive and externally validate a simple, machine learning (ML)-based scoring system using variables readily available at first medical contact to predict the risk of developing CS during hospitalization in patients with ACS.</p><p><strong>Methods and results: </strong>Observational multicentre study on ACS patients hospitalized at intensive care units. Derivation cohort included over 40 000 patients from Beth Israel Deaconess Medical Center, Boston, USA. Validation cohort included 5123 patients from the Sheba Medical Center, Ramat Gan, Israel. The final derivation cohort consisted of 3228 and the final validation cohort of 4904 ACS patients without CS at hospital admission. Development of CS was adjudicated manually based on the patients' reports. From nine ML models based on 13 variables (heart rate, respiratory rate, oxygen saturation, blood glucose level, systolic blood pressure, age, sex, shock index, heart rhythm, type of ACS, history of hypertension, congestive heart failure, and hypercholesterolaemia), logistic regression with elastic net regularization had the highest externally validated predictive performance (<i>c</i>-statistics: 0.844, 95% CI, 0.841-0.847).</p><p><strong>Conclusion: </strong>STOP SHOCK score is a simple ML-based tool available at first medical contact showing high performance for prediction of developing CS during hospitalization in ACS patients. The web application is available at https://stopshock.org/#calculator.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 2","pages":"240-251"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Cardiogenic shock (CS) is a severe complication of acute coronary syndrome (ACS) with mortality rates approaching 50%. The ability to identify high-risk patients prior to the development of CS may allow for pre-emptive measures to prevent the development of CS. The objective was to derive and externally validate a simple, machine learning (ML)-based scoring system using variables readily available at first medical contact to predict the risk of developing CS during hospitalization in patients with ACS.

Methods and results: Observational multicentre study on ACS patients hospitalized at intensive care units. Derivation cohort included over 40 000 patients from Beth Israel Deaconess Medical Center, Boston, USA. Validation cohort included 5123 patients from the Sheba Medical Center, Ramat Gan, Israel. The final derivation cohort consisted of 3228 and the final validation cohort of 4904 ACS patients without CS at hospital admission. Development of CS was adjudicated manually based on the patients' reports. From nine ML models based on 13 variables (heart rate, respiratory rate, oxygen saturation, blood glucose level, systolic blood pressure, age, sex, shock index, heart rhythm, type of ACS, history of hypertension, congestive heart failure, and hypercholesterolaemia), logistic regression with elastic net regularization had the highest externally validated predictive performance (c-statistics: 0.844, 95% CI, 0.841-0.847).

Conclusion: STOP SHOCK score is a simple ML-based tool available at first medical contact showing high performance for prediction of developing CS during hospitalization in ACS patients. The web application is available at https://stopshock.org/#calculator.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的评分系统预测急性冠状动脉综合征的心源性休克。
目的:心源性休克(CS)是急性冠状动脉综合征(ACS)的严重并发症,死亡率接近 50%。如果能在发生 CS 之前识别出高风险患者,就能采取先发制人的措施预防 CS 的发生。该研究的目的是利用首次医疗接触时可获得的变量来预测冠状动脉综合征患者住院期间发生 CS 的风险,从而推导并从外部验证一种基于机器学习(ML)的简单评分系统:对在重症监护病房住院的 ACS 患者进行多中心观察研究。衍生队列包括美国波士顿贝斯以色列女执事医疗中心的 4 万多名患者。验证队列包括以色列拉马特甘谢巴医疗中心的 5123 名患者。最终衍生队列包括 3228 名入院时未发生 CS 的 ACS 患者,最终验证队列包括 4904 名入院时未发生 CS 的 ACS 患者。CS的发生是根据患者的报告人工判定的。在基于13个变量(心率、呼吸频率、血氧饱和度、血糖水平、收缩压、年龄、性别、休克指数、心律、ACS类型、高血压病史、充血性心力衰竭和高胆固醇血症)的9个ML模型中,采用弹性网正则化的逻辑回归具有最高的外部验证预测性能(c统计量:0.844,95% CI,0.841-0.847):STOP SHOCK 评分是一种基于 ML 的简单工具,可在首次医疗接触时使用,在预测 ACS 患者住院期间发生 CS 方面表现出色。该网络应用程序可在 https://stopshock.org/#calculator 网站上下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Echocardiographic measures read by artificial intelligence enable accurate and rapid prediction of the worsening of heart failure. Deep learning-based quantification of epicardial adipose tissue volume from non-contrast computed tomography images: a multi-centre study. Cardiac surveillance of childhood cancer using artificial intelligence-enabled electrocardiograms. High-dimensional machine learning models for prediction of heart failure in more than 400 000 men and women from the UK Biobank. AI-guided refinement of coronary revascularization need in patients suspected of acute coronary syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1