Drug target assessments: classifying target modulation and associated health effects using multi-level BERT-based classification models.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-03-08 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf043
Jennifer Venhorst, Gino Kalkman
{"title":"Drug target assessments: classifying target modulation and associated health effects using multi-level BERT-based classification models.","authors":"Jennifer Venhorst, Gino Kalkman","doi":"10.1093/bioadv/vbaf043","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Drug target selection determines the success of the drug development pipeline. Therefore, novel drug targets need to be assessed for their therapeutic benefits/risks at the earliest stage possible. Where manual risk/benefit analyses are often user-biased and time-consuming, Large Language Models can offer a systematic and efficient approach to curating and analysing literature. Currently, publicly available Large Language Models are lacking for this task, while public platforms for target assessments are limited to co-occurrences.</p><p><strong>Results: </strong>BERT-models for multi-level classification of drug target-health effect relationships described in PubMed were developed. Relationships were classified based on (i) causality; (ii) direction of target modulation; (iii) direction of the associated health effect. The models showed competitive performances with F1 scores between 0.86 and 0.92 and their applicability was demonstrated using ADAM33 and OSM as case study. The developed classification pipeline is the first to allow detailed classification of drug target-health effect relationships. The models provide mechanistic insight into how target modulation affects health and disease, both from an efficacy and safety perspective. The models, deployed on the whole of PubMed and available through the TargetTri platform, are expected to offer a significant advancement in artificial intelligence-assisted target identification and evaluation.</p><p><strong>Availability and implementation: </strong>https://www.targettri.com.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf043"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Drug target selection determines the success of the drug development pipeline. Therefore, novel drug targets need to be assessed for their therapeutic benefits/risks at the earliest stage possible. Where manual risk/benefit analyses are often user-biased and time-consuming, Large Language Models can offer a systematic and efficient approach to curating and analysing literature. Currently, publicly available Large Language Models are lacking for this task, while public platforms for target assessments are limited to co-occurrences.

Results: BERT-models for multi-level classification of drug target-health effect relationships described in PubMed were developed. Relationships were classified based on (i) causality; (ii) direction of target modulation; (iii) direction of the associated health effect. The models showed competitive performances with F1 scores between 0.86 and 0.92 and their applicability was demonstrated using ADAM33 and OSM as case study. The developed classification pipeline is the first to allow detailed classification of drug target-health effect relationships. The models provide mechanistic insight into how target modulation affects health and disease, both from an efficacy and safety perspective. The models, deployed on the whole of PubMed and available through the TargetTri platform, are expected to offer a significant advancement in artificial intelligence-assisted target identification and evaluation.

Availability and implementation: https://www.targettri.com.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Isopeptor: a tool for detecting intramolecular isopeptide bonds in protein structures. Quantifying uncertainty in microbiome-based prediction using Gaussian processes with microbial community dissimilarities. LipidSigR: a R-based solution for integrated lipidomics data analysis and visualization. A unified hypothesis-free feature extraction framework for diverse epigenomic data. Drug target assessments: classifying target modulation and associated health effects using multi-level BERT-based classification models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1