Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL Biomaterials research Pub Date : 2025-03-19 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0170
Chae Eun Lee, Kyung Mu Noh, Sungjun Kim, Jiyeon Hong, Kyobum Kim
{"title":"Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor.","authors":"Chae Eun Lee, Kyung Mu Noh, Sungjun Kim, Jiyeon Hong, Kyobum Kim","doi":"10.34133/bmr.0170","DOIUrl":null,"url":null,"abstract":"<p><p>Effective drug delivery relies on the selection of suitable carriers, which is crucial for protein-based therapeutics such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). One of the key advantages of TRAIL is its ability to selectively induce apoptosis in cancer cells excluding healthy tissues by binding to death receptors DR4 and DR5, which are highly expressed in various cancer cells. Despite this promise, the clinical application of TRAIL has been limited by its short half-life, limited stability, and inefficient delivery to tumor sites. To overcome currently available clinical and engineering approaches, a series of sophisticated strategies is required: (a) the design of biomaterial-mediated carriers for enhanced targeting efficacy, particularly via optimizing selected materials, composition, formulation, and surface modulation. Moreover, (b) development of genetically modified cellular products for augmented TRAIL secretion toward tumor microenvironments and (c) cell surface engineering techniques for TRAIL immobilization onto infusible cell populations are also discussed in the present review. Among these approaches, living cell-based carriers offer the distinct advantage of systemically administered TRAIL-functionalized cells capturing circulating tumor cells in the bloodstream, thereby preventing secondary tumor formation. This review provides insight into the development of novel TRAIL delivery platforms, discusses considerations for clinical translation, and suggests future directions and complementary strategies to advance the field of TRAIL-based cancer therapeutics.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0170"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effective drug delivery relies on the selection of suitable carriers, which is crucial for protein-based therapeutics such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). One of the key advantages of TRAIL is its ability to selectively induce apoptosis in cancer cells excluding healthy tissues by binding to death receptors DR4 and DR5, which are highly expressed in various cancer cells. Despite this promise, the clinical application of TRAIL has been limited by its short half-life, limited stability, and inefficient delivery to tumor sites. To overcome currently available clinical and engineering approaches, a series of sophisticated strategies is required: (a) the design of biomaterial-mediated carriers for enhanced targeting efficacy, particularly via optimizing selected materials, composition, formulation, and surface modulation. Moreover, (b) development of genetically modified cellular products for augmented TRAIL secretion toward tumor microenvironments and (c) cell surface engineering techniques for TRAIL immobilization onto infusible cell populations are also discussed in the present review. Among these approaches, living cell-based carriers offer the distinct advantage of systemically administered TRAIL-functionalized cells capturing circulating tumor cells in the bloodstream, thereby preventing secondary tumor formation. This review provides insight into the development of novel TRAIL delivery platforms, discusses considerations for clinical translation, and suggests future directions and complementary strategies to advance the field of TRAIL-based cancer therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polydopamine-based Nanoadjuvants Promote a Positive Feedback Loop for Cancer Immunotherapy via Overcoming Photothermally Boosted T Cell Exhaustion. Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor. The Extracellular Matrix Promotes Diabetic Oral Wound Healing by Modulating the Microenvironment. Natural Polyphenol-Mediated Inhibition of Ferroptosis Alleviates Oxidative Damage and Inflammation in Acute Liver Injury. Image-Guided Monitoring of Mitochondria and Blood-Brain Barrier Dysfunction in Amyotrophic Lateral Sclerosis Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1