Leilei Kang, Beien Zhu, Qingqing Gu, Xinyi Duan, Lei Ying, Guodong Qi, Jun Xu, Lin Li, Yang Su, Yanan Xing, Yanlong Wang, Gang Li, Rengui Li, Yi Gao, Bing Yang, Xiao Yan Liu, Aiqin Wang, Tao Zhang
{"title":"Light-driven propane dehydrogenation by a single-atom catalyst under near-ambient conditions","authors":"Leilei Kang, Beien Zhu, Qingqing Gu, Xinyi Duan, Lei Ying, Guodong Qi, Jun Xu, Lin Li, Yang Su, Yanan Xing, Yanlong Wang, Gang Li, Rengui Li, Yi Gao, Bing Yang, Xiao Yan Liu, Aiqin Wang, Tao Zhang","doi":"10.1038/s41557-025-01766-3","DOIUrl":null,"url":null,"abstract":"<p>Propane dehydrogenation is an energy-intensive industrial reaction that requires high temperatures (550–750 °C) to overcome thermodynamic barriers. Here we overcome these limits and demonstrate that near-ambient propane dehydrogenation can be achieved through photo-thermo-catalysis in a water-vapour environment. We reduce the reaction temperature to 50–80 °C using a single-atom catalyst of copper supported on TiO<sub>2</sub> and a continuous-flow fixed-bed reactor. The mechanism differs from conventional propane dehydrogenation in that hydrogen is produced from the photocatalytic splitting of water vapour, surface-bound hydroxyl radicals extract propane hydrogen atoms to form propylene without over-oxidation, and water serves as a catalyst. This route also works for the dehydrogenation of other small alkanes. Moreover, we demonstrate sunlight-driven water-catalysed propane dehydrogenation operating at reaction temperatures as low as 10 °C. We anticipate that this work will be a starting point for integrating solar energy usage into a wide range of high-temperature industrial reactions.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"56 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01766-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Propane dehydrogenation is an energy-intensive industrial reaction that requires high temperatures (550–750 °C) to overcome thermodynamic barriers. Here we overcome these limits and demonstrate that near-ambient propane dehydrogenation can be achieved through photo-thermo-catalysis in a water-vapour environment. We reduce the reaction temperature to 50–80 °C using a single-atom catalyst of copper supported on TiO2 and a continuous-flow fixed-bed reactor. The mechanism differs from conventional propane dehydrogenation in that hydrogen is produced from the photocatalytic splitting of water vapour, surface-bound hydroxyl radicals extract propane hydrogen atoms to form propylene without over-oxidation, and water serves as a catalyst. This route also works for the dehydrogenation of other small alkanes. Moreover, we demonstrate sunlight-driven water-catalysed propane dehydrogenation operating at reaction temperatures as low as 10 °C. We anticipate that this work will be a starting point for integrating solar energy usage into a wide range of high-temperature industrial reactions.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.