Legume introduction increases soil organic carbon in grassland via regulation of microbial metabolism regardless of phosphorus fertilization

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-03-21 DOI:10.1016/j.geoderma.2025.117262
Meiqi Guo, Tongtian Guo, Gaowen Yang, Nan Liu, Jiqiong Zhou, Yingjun Zhang
{"title":"Legume introduction increases soil organic carbon in grassland via regulation of microbial metabolism regardless of phosphorus fertilization","authors":"Meiqi Guo, Tongtian Guo, Gaowen Yang, Nan Liu, Jiqiong Zhou, Yingjun Zhang","doi":"10.1016/j.geoderma.2025.117262","DOIUrl":null,"url":null,"abstract":"Introducing legumes into grasslands can enhance soil organic carbon (SOC) storage, but high phosphorus (P) requirement of legume nitrogen (N) fixation may accelerate soil P depletion. As a result, P fertilizers are often applied to improve legume performance. However, the effects of legume introduction and P availability on SOC storage in grasslands remain poorly understood. In this study, we investigated how legume introduction and P fertilization influence SOC physical fractions and associated microbial metabolic activities, based on a ten-year field experiment. Our results showed that legume introduction increased mineral-associated organic carbon (MAOC) by 7.4 % and total SOC by 5.7 % compared to grasslands without legume introduction. This enhancement can be attributed to the improved soil substrate quality (lower carbon to nitrogen ratio) and enhanced microbial carbon (C) limitation (relative microbial nutrient limitation calculated using vector analysis based on ecoenzymatic stoichiometric theory models), which led to higher microbial carbon use efficiency (CUE) and lower microbial metabolic quotient (<ce:italic>q</ce:italic>CO<ce:inf loc=\"post\">2</ce:inf>). Phosphorus fertilization reduced microbial biomass and <ce:italic>q</ce:italic>CO<ce:inf loc=\"post\">2</ce:inf> by increasing microbial C limitation, thereby leading to a 9.3 % increase in particulate organic carbon (POC); however, it did not affect SOC compared to no P fertilization. Moreover, the positive effect of P on POC was observed only when legume was not introduced, indicating legume introduction weakened this positive effect. In conclusion, introducing legumes to natural grasslands can enhance long-term SOC stabilization and storage by stimulating microbial metabolic activity, offering a sustainable strategy to improve soil fertility and agricultural productivity without the need for P fertilization.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"27 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2025.117262","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introducing legumes into grasslands can enhance soil organic carbon (SOC) storage, but high phosphorus (P) requirement of legume nitrogen (N) fixation may accelerate soil P depletion. As a result, P fertilizers are often applied to improve legume performance. However, the effects of legume introduction and P availability on SOC storage in grasslands remain poorly understood. In this study, we investigated how legume introduction and P fertilization influence SOC physical fractions and associated microbial metabolic activities, based on a ten-year field experiment. Our results showed that legume introduction increased mineral-associated organic carbon (MAOC) by 7.4 % and total SOC by 5.7 % compared to grasslands without legume introduction. This enhancement can be attributed to the improved soil substrate quality (lower carbon to nitrogen ratio) and enhanced microbial carbon (C) limitation (relative microbial nutrient limitation calculated using vector analysis based on ecoenzymatic stoichiometric theory models), which led to higher microbial carbon use efficiency (CUE) and lower microbial metabolic quotient (qCO2). Phosphorus fertilization reduced microbial biomass and qCO2 by increasing microbial C limitation, thereby leading to a 9.3 % increase in particulate organic carbon (POC); however, it did not affect SOC compared to no P fertilization. Moreover, the positive effect of P on POC was observed only when legume was not introduced, indicating legume introduction weakened this positive effect. In conclusion, introducing legumes to natural grasslands can enhance long-term SOC stabilization and storage by stimulating microbial metabolic activity, offering a sustainable strategy to improve soil fertility and agricultural productivity without the need for P fertilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Legume introduction increases soil organic carbon in grassland via regulation of microbial metabolism regardless of phosphorus fertilization The role of Ca-bridged organic matter in an alkaline soil, as revealed by multimodal chemical imaging Field experiment reveals varied earthworm densities boost soil organic carbon more than they increase carbon dioxide emissions The predominance of root- and salt-marsh-derived soil organic carbon in a mangrove poleward range expansion front Effects of vegetation restoration on soil organic carbon on the Loess Plateau, China using a combined remote sensing and process-based modeling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1