A theoretical investigation of heavy atom and oxidation effects in MR-TADF emitters for OLEDs: a combined DFT, double hybrid DFT, CCSD, and QM/MM approaches
Singaravel Nathiya, Murugesan Panneerselvam, Luciano T. Costa
{"title":"A theoretical investigation of heavy atom and oxidation effects in MR-TADF emitters for OLEDs: a combined DFT, double hybrid DFT, CCSD, and QM/MM approaches","authors":"Singaravel Nathiya, Murugesan Panneerselvam, Luciano T. Costa","doi":"10.1039/d5cp00033e","DOIUrl":null,"url":null,"abstract":"The emerging multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with organoboron and nitrogen cores highlight their significance in OLEDs. However, their efficiency is challenged by slower rate constants in the reverse intersystem crossing (<em>k</em><small><sub>RISC</sub></small>) process compared to conventional TADF emitters. The study entails an in-depth analysis focused on gaining a better understanding of the photophysical properties of MR-TADF emitters. Using DFT and TD-DFT analyses, 48 MR-TADF molecules are studied, incorporating heavy atoms such as sulfur and selenium, and their subsequent oxidation, and peripheral donors such as carbazole (Cz), <em>tert</em>-butyl-carbazole (<em>t</em>Cz), diphenylacridine (DPAC), and dimethylacridine (DMAC) into organo boron and nitrogen-embedded systems. Moreover, the QM/MM approach was utilized to examine the excited state properties in the crystal phase. A comprehensive assessment of this molecular framework reveals that integrating heavy atoms and donors into MR-TADF molecules results in significant enhancements in Δ<em>E</em><small><sub>ST</sub></small>, larger SOC, and higher-order radiative (10<small><sup>8</sup></small> s<small><sup>−1</sup></small>) rates, leading to faster <em>k</em><small><sub>ISC</sub></small> (∼10<small><sup>8</sup></small> s<small><sup>−1</sup></small>) and <em>k</em><small><sub>RISC</sub></small> (∼10<small><sup>6</sup></small> s<small><sup>−1</sup></small>) rates. Based on key criteria, eight potential molecules were selected and their excited-state properties were precisely analyzed using double-hybrid density functionals including B2PLYP and PBE0-2, along with highly correlated wave function STEOM-DLPNO-CCSD.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"69 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00033e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with organoboron and nitrogen cores highlight their significance in OLEDs. However, their efficiency is challenged by slower rate constants in the reverse intersystem crossing (kRISC) process compared to conventional TADF emitters. The study entails an in-depth analysis focused on gaining a better understanding of the photophysical properties of MR-TADF emitters. Using DFT and TD-DFT analyses, 48 MR-TADF molecules are studied, incorporating heavy atoms such as sulfur and selenium, and their subsequent oxidation, and peripheral donors such as carbazole (Cz), tert-butyl-carbazole (tCz), diphenylacridine (DPAC), and dimethylacridine (DMAC) into organo boron and nitrogen-embedded systems. Moreover, the QM/MM approach was utilized to examine the excited state properties in the crystal phase. A comprehensive assessment of this molecular framework reveals that integrating heavy atoms and donors into MR-TADF molecules results in significant enhancements in ΔEST, larger SOC, and higher-order radiative (108 s−1) rates, leading to faster kISC (∼108 s−1) and kRISC (∼106 s−1) rates. Based on key criteria, eight potential molecules were selected and their excited-state properties were precisely analyzed using double-hybrid density functionals including B2PLYP and PBE0-2, along with highly correlated wave function STEOM-DLPNO-CCSD.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.