{"title":"Red-light signaling pathway activates desert cyanobacteria to prepare for desiccation tolerance","authors":"Hai-Feng Xu, Guo-Zheng Dai, Ren-Han Li, Yang Bai, Ai-Wei Zuo, Lei Zhao, Shu-Ren Cui, Jin-Long Shang, Chao Cheng, Yu-Jie Wang, Gui-Fang Feng, Deqiang Duanmu, Aaron Kaplan, Bao-Sheng Qiu","doi":"10.1073/pnas.2502034122","DOIUrl":null,"url":null,"abstract":"Desiccation-tolerant cyanobacteria are able to survive frequent cycles of hydration and dehydration, which are closely linked to diurnal light oscillations. Previous studies have shown that light serves as a crucial anticipatory cue, activating desert cyanobacteria to prepare for desiccation. However, the mechanisms underlying their light-coupled desiccation tolerance remain largely unknown. Here, we demonstrate that red-light-induced photosynthetic genes are positively regulated by a LuxR family transcription factor NfSrr1. We further identified the cyanobacteriochrome NfPixJ as interacting with NfSrr1 and functioning as a red light sensor. Phenotypic analysis revealed that the red-light signaling module NfPixJ-NfSrr1 plays a key role in preparing cyanobacteria for desiccation tolerance. This module also regulates the synthesis of protective compatible solutes, suggesting that red light functions as a global regulatory signal for the broader stress response. Phylogenetic analysis indicates that the presence of this red-light signaling pathway, mediated by NfPixJ-NfSrr1 module, correlates with the ability of cyanobacteria to thrive in water-deficit habitats. Overall, our findings uncover a red-light signaling pathway that enhances desiccation tolerance as desert cyanobacteria encounter red light at dawn, before water limitation. These results provide insights into the mechanisms behind light-induced anticipatory stress tolerance in photosynthetic organisms.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"12 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2502034122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Desiccation-tolerant cyanobacteria are able to survive frequent cycles of hydration and dehydration, which are closely linked to diurnal light oscillations. Previous studies have shown that light serves as a crucial anticipatory cue, activating desert cyanobacteria to prepare for desiccation. However, the mechanisms underlying their light-coupled desiccation tolerance remain largely unknown. Here, we demonstrate that red-light-induced photosynthetic genes are positively regulated by a LuxR family transcription factor NfSrr1. We further identified the cyanobacteriochrome NfPixJ as interacting with NfSrr1 and functioning as a red light sensor. Phenotypic analysis revealed that the red-light signaling module NfPixJ-NfSrr1 plays a key role in preparing cyanobacteria for desiccation tolerance. This module also regulates the synthesis of protective compatible solutes, suggesting that red light functions as a global regulatory signal for the broader stress response. Phylogenetic analysis indicates that the presence of this red-light signaling pathway, mediated by NfPixJ-NfSrr1 module, correlates with the ability of cyanobacteria to thrive in water-deficit habitats. Overall, our findings uncover a red-light signaling pathway that enhances desiccation tolerance as desert cyanobacteria encounter red light at dawn, before water limitation. These results provide insights into the mechanisms behind light-induced anticipatory stress tolerance in photosynthetic organisms.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.