Preventing Loss of Selectivity during the Oxidative Dehydrogenation of Propane over Supported Vanadium Catalysts

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2025-03-20 DOI:10.1021/acscatal.5c00720
Abdullah J. Al Abdulghani, Unni Kurumbail, Son Dong, Natalie R. Altvater, Rick W. Dorn, Melissa C. Cendejas, William P. McDermott, Theodore O. Agbi, Collin M. Queen, Matias Alvear, Ashley R. Head, Aaron J. Rossini, Ive Hermans
{"title":"Preventing Loss of Selectivity during the Oxidative Dehydrogenation of Propane over Supported Vanadium Catalysts","authors":"Abdullah J. Al Abdulghani, Unni Kurumbail, Son Dong, Natalie R. Altvater, Rick W. Dorn, Melissa C. Cendejas, William P. McDermott, Theodore O. Agbi, Collin M. Queen, Matias Alvear, Ashley R. Head, Aaron J. Rossini, Ive Hermans","doi":"10.1021/acscatal.5c00720","DOIUrl":null,"url":null,"abstract":"Supported vanadium materials are promising catalysts for the oxidative dehydrogenation of propane to propylene (ODHP), but a lack of mechanistic understanding limits the rational design of catalysts with improved propylene selectivity. Adding Ta to V/SiO<sub>2</sub> increases the propylene selectivity, as well as the activity, leading to superior performance compared to state-of-the-art boron-based systems. In this contribution, we utilize this surprising promotional effect of Ta to elucidate key elements of the mechanistic cycle. Through a combination of characterization techniques, computational modeling, and kinetic experiments, we show that the catalytic cycle over V/SiO<sub>2</sub> likely involves the formation of an isopropyl alcohol intermediate, the fate of which is in kinetic competition between subsequent dehydration to propylene or further oxidation. Furthermore, we show that the relatively facile propylene overoxidation observed for these materials occurs via the epoxidation of propylene by a proposed peroxovanadium intermediate, rather than the abstraction of propylene’s allylic C–H bond as previously assumed. Using these key mechanistic features, we rationalize the enhanced selectivity and activity of Ta promotion. Our mechanistic framework offers avenues for future catalyst development to improve supported vanadium materials for ODHP.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"27 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c00720","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Supported vanadium materials are promising catalysts for the oxidative dehydrogenation of propane to propylene (ODHP), but a lack of mechanistic understanding limits the rational design of catalysts with improved propylene selectivity. Adding Ta to V/SiO2 increases the propylene selectivity, as well as the activity, leading to superior performance compared to state-of-the-art boron-based systems. In this contribution, we utilize this surprising promotional effect of Ta to elucidate key elements of the mechanistic cycle. Through a combination of characterization techniques, computational modeling, and kinetic experiments, we show that the catalytic cycle over V/SiO2 likely involves the formation of an isopropyl alcohol intermediate, the fate of which is in kinetic competition between subsequent dehydration to propylene or further oxidation. Furthermore, we show that the relatively facile propylene overoxidation observed for these materials occurs via the epoxidation of propylene by a proposed peroxovanadium intermediate, rather than the abstraction of propylene’s allylic C–H bond as previously assumed. Using these key mechanistic features, we rationalize the enhanced selectivity and activity of Ta promotion. Our mechanistic framework offers avenues for future catalyst development to improve supported vanadium materials for ODHP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在负载型钒催化剂上防止丙烷氧化脱氢过程中选择性损失
支撑钒材料是丙烷氧化脱氢制丙烯(ODHP)的前景广阔的催化剂,但由于缺乏对机理的了解,限制了提高丙烯选择性催化剂的合理设计。在 V/SiO2 中添加 Ta 可以提高丙烯的选择性和活性,从而使催化剂的性能优于最先进的硼基体系。在这篇论文中,我们利用 Ta 的这种令人惊讶的促进作用来阐明机理循环的关键要素。通过结合表征技术、计算建模和动力学实验,我们发现 V/SiO2 催化循环很可能涉及异丙醇中间体的形成,而异丙醇中间体的命运则取决于后续脱水成丙烯或进一步氧化之间的动力学竞争。此外,我们还表明,在这些材料中观察到的相对容易的丙烯过氧化反应是通过一种拟过氧钒中间体对丙烯的环氧化作用而发生的,而不是像以前假设的那样是丙烯的烯丙基 C-H 键的抽离作用。利用这些关键的机理特征,我们合理地解释了 Ta 促进剂所增强的选择性和活性。我们的机理框架为未来催化剂的开发提供了途径,以改进用于 ODHP 的支撑钒材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Insights into Ethylene Deep Oxidation on Pd–Au Bimetallic Catalysts: From Surface Dynamics to Pathway Selectivity Synergy of Single-Atom Platinum and Oxygen Vacancy Engineering Boosts Photoelectrochemical Water Oxidation of ZnFe2O4 Photoanodes with Surface State Reconstruction Computational Redesign and Mechanistic Insights into P450BM3 Enable Regioselective C–H Hydroxylation of Structurally Diverse Steroids Correction to “Mechanistic Insights into the Electroreduction of Carbon Dioxide to Formate on Palladium” Selective Dinitrogen Electroreduction to Ammonia on Zn2V2O7 Pyrochlore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1