Sara T. Gebre, Luis Martinez-Gomez, Christopher R. Miller, Clifford P. Kubiak, Raphael F. Ribeiro, Tianquan Lian
{"title":"Fano Resonance in CO2 Reduction Catalyst Functionalized Quantum Dots","authors":"Sara T. Gebre, Luis Martinez-Gomez, Christopher R. Miller, Clifford P. Kubiak, Raphael F. Ribeiro, Tianquan Lian","doi":"10.1021/jacs.4c14499","DOIUrl":null,"url":null,"abstract":"Molecular catalyst functionalized semiconductor quantum dots (QDs) are a promising modular platform for developing novel hybrid photocatalysts. The interaction between adsorbed catalyst vibrations and the QD electron intraband absorption can influence the photophysical properties of both the QD and the catalysts and potentially their photocatalysis. In CdSe QDs functionalized by the CO<sub>2</sub> reduction catalyst, Re(CO)<sub>3</sub>(4,4’-bipyridine-COOH)Cl, we observe that the transient Fano resonance signal resulting from coupling of the catalyst CO stretching mode and the QD conduction band electron mid-IR intraband absorption appears on an ultrafast time scale and decays with the electron population, irrespective of the occurrence of photoreduced catalysts. The Fano asymmetry factor increases with an increase in the adsorbed catalyst number and a decrease in QD sizes. The latter can be attributed to an enhanced charge transfer interaction between the more strongly quantum-confined QD conduction band and catalyst LUMO levels. These results provide a more in-depth understanding of interactions in excited QD-catalyst hybrid photocatalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14499","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular catalyst functionalized semiconductor quantum dots (QDs) are a promising modular platform for developing novel hybrid photocatalysts. The interaction between adsorbed catalyst vibrations and the QD electron intraband absorption can influence the photophysical properties of both the QD and the catalysts and potentially their photocatalysis. In CdSe QDs functionalized by the CO2 reduction catalyst, Re(CO)3(4,4’-bipyridine-COOH)Cl, we observe that the transient Fano resonance signal resulting from coupling of the catalyst CO stretching mode and the QD conduction band electron mid-IR intraband absorption appears on an ultrafast time scale and decays with the electron population, irrespective of the occurrence of photoreduced catalysts. The Fano asymmetry factor increases with an increase in the adsorbed catalyst number and a decrease in QD sizes. The latter can be attributed to an enhanced charge transfer interaction between the more strongly quantum-confined QD conduction band and catalyst LUMO levels. These results provide a more in-depth understanding of interactions in excited QD-catalyst hybrid photocatalysts.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.