Fano Resonance in CO2 Reduction Catalyst Functionalized Quantum Dots

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-03-21 DOI:10.1021/jacs.4c14499
Sara T. Gebre, Luis Martinez-Gomez, Christopher R. Miller, Clifford P. Kubiak, Raphael F. Ribeiro, Tianquan Lian
{"title":"Fano Resonance in CO2 Reduction Catalyst Functionalized Quantum Dots","authors":"Sara T. Gebre, Luis Martinez-Gomez, Christopher R. Miller, Clifford P. Kubiak, Raphael F. Ribeiro, Tianquan Lian","doi":"10.1021/jacs.4c14499","DOIUrl":null,"url":null,"abstract":"Molecular catalyst functionalized semiconductor quantum dots (QDs) are a promising modular platform for developing novel hybrid photocatalysts. The interaction between adsorbed catalyst vibrations and the QD electron intraband absorption can influence the photophysical properties of both the QD and the catalysts and potentially their photocatalysis. In CdSe QDs functionalized by the CO<sub>2</sub> reduction catalyst, Re(CO)<sub>3</sub>(4,4’-bipyridine-COOH)Cl, we observe that the transient Fano resonance signal resulting from coupling of the catalyst CO stretching mode and the QD conduction band electron mid-IR intraband absorption appears on an ultrafast time scale and decays with the electron population, irrespective of the occurrence of photoreduced catalysts. The Fano asymmetry factor increases with an increase in the adsorbed catalyst number and a decrease in QD sizes. The latter can be attributed to an enhanced charge transfer interaction between the more strongly quantum-confined QD conduction band and catalyst LUMO levels. These results provide a more in-depth understanding of interactions in excited QD-catalyst hybrid photocatalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14499","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular catalyst functionalized semiconductor quantum dots (QDs) are a promising modular platform for developing novel hybrid photocatalysts. The interaction between adsorbed catalyst vibrations and the QD electron intraband absorption can influence the photophysical properties of both the QD and the catalysts and potentially their photocatalysis. In CdSe QDs functionalized by the CO2 reduction catalyst, Re(CO)3(4,4’-bipyridine-COOH)Cl, we observe that the transient Fano resonance signal resulting from coupling of the catalyst CO stretching mode and the QD conduction band electron mid-IR intraband absorption appears on an ultrafast time scale and decays with the electron population, irrespective of the occurrence of photoreduced catalysts. The Fano asymmetry factor increases with an increase in the adsorbed catalyst number and a decrease in QD sizes. The latter can be attributed to an enhanced charge transfer interaction between the more strongly quantum-confined QD conduction band and catalyst LUMO levels. These results provide a more in-depth understanding of interactions in excited QD-catalyst hybrid photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Microdroplet Chemistry with Unactivated Droplets Fano Resonance in CO2 Reduction Catalyst Functionalized Quantum Dots Hydrogen-Vacancy-Induced Stable Superconducting Niobium Hydride at High Pressure Conversion of Compositionally Diverse Plastic Waste over Earth-Abundant Sulfides Dissecting the Effects of Cage Structure in the Catalytic Activation of Imide Chlorenium-Ion Donors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1