Satellite Attitude Estimation Based on Whole-to-Part Decoupling

Zipeng Zhang;Wenzheng Wang;Chenwei Deng;Yuqi Han;Zhuokai Li
{"title":"Satellite Attitude Estimation Based on Whole-to-Part Decoupling","authors":"Zipeng Zhang;Wenzheng Wang;Chenwei Deng;Yuqi Han;Zhuokai Li","doi":"10.1109/LGRS.2025.3545438","DOIUrl":null,"url":null,"abstract":"Satellite attitude estimation is a key technology in on-orbit servicing missions. However, occlusions on the satellite’s surface in space introduce local omissions in satellite images, resulting in incomplete extraction of global satellite features. This causes significant biases in the mapping from features to attitude. Besides, there is a coupling between the parameters in rotation representations such as Euler angles and quaternions, making it difficult to improve the accuracy of each attitude parameter simultaneously. Existing methods focus on improving feature extraction performance and lack an evaluation of the relationship between satellite structure and attitude. To address these issues, we proposed a satellite attitude estimation method based on whole-to-part decoupling to separate features and reconstruct rotation representation, balancing attitude estimation biases. Specifically, we constructed a multibranch mapping with feature decoupling to select robust local features that contribute to attitude estimation, mitigating the impact of occlusion on feature extraction. Meanwhile, we designed an explicit rotation representation to decouple attitude parameters and match the relevant mappings for each parameter, reducing the estimation biases. The experimental results on public datasets demonstrate that the proposed method outperforms existing methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite attitude estimation is a key technology in on-orbit servicing missions. However, occlusions on the satellite’s surface in space introduce local omissions in satellite images, resulting in incomplete extraction of global satellite features. This causes significant biases in the mapping from features to attitude. Besides, there is a coupling between the parameters in rotation representations such as Euler angles and quaternions, making it difficult to improve the accuracy of each attitude parameter simultaneously. Existing methods focus on improving feature extraction performance and lack an evaluation of the relationship between satellite structure and attitude. To address these issues, we proposed a satellite attitude estimation method based on whole-to-part decoupling to separate features and reconstruct rotation representation, balancing attitude estimation biases. Specifically, we constructed a multibranch mapping with feature decoupling to select robust local features that contribute to attitude estimation, mitigating the impact of occlusion on feature extraction. Meanwhile, we designed an explicit rotation representation to decouple attitude parameters and match the relevant mappings for each parameter, reducing the estimation biases. The experimental results on public datasets demonstrate that the proposed method outperforms existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于整体对部分解耦的卫星姿态估计
卫星姿态估计是在轨服务任务中的一项关键技术。然而,卫星表面在空间上的遮挡会在卫星图像中引入局部遗漏,导致卫星整体特征提取不完整。这在从特征到态度的映射中导致了显著的偏差。此外,欧拉角和四元数等旋转表示参数之间存在耦合,难以同时提高各姿态参数的精度。现有方法侧重于提高特征提取性能,缺乏对卫星结构与姿态之间关系的评估。针对这些问题,提出了一种基于整体到部分解耦的卫星姿态估计方法,分离特征并重构旋转表示,平衡姿态估计偏差。具体来说,我们构建了一个特征解耦的多分支映射,以选择有助于姿态估计的鲁棒局部特征,减轻遮挡对特征提取的影响。同时,我们设计了一个显式的旋转表示来解耦姿态参数,并匹配每个参数的相关映射,减少了估计偏差。在公共数据集上的实验结果表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction Source Independent Reflection Waveform Inversion Seismic Denoising via Multiround SCU-Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1