Learning the Inverse Hitting Problem

IF 5.3 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-03-06 DOI:10.1109/LRA.2025.3548496
Harshit Khurana;James Hermus;Maxime Gautier;Aude Billard
{"title":"Learning the Inverse Hitting Problem","authors":"Harshit Khurana;James Hermus;Maxime Gautier;Aude Billard","doi":"10.1109/LRA.2025.3548496","DOIUrl":null,"url":null,"abstract":"This letter presents a data collection framework and a learning model to understand the motion of an object after being subject to an impulse. The data collection framework consists of an automated dual arm setup hitting an object to each other, like a collaborative air-hockey game. An impact aware extended Kalman filter is proposed for automation of the air-hockey setup which approximates the discontinuous impulse motion equations through a hitting force model by balancing the energies during collision. To capture the variance in the motion that stochasticity of friction introduces, the errors in the controls for the hitting flux, we model the stochastic relationship between hitting flux and object's resulting displacement, using full density modeling. Further we show the application of the learnt motion model for planning sequential hits with two or more robots, in a Golf-like principle, to enable an object to reach a location far beyond the reach of a single robot.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4180-4187"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916503/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a data collection framework and a learning model to understand the motion of an object after being subject to an impulse. The data collection framework consists of an automated dual arm setup hitting an object to each other, like a collaborative air-hockey game. An impact aware extended Kalman filter is proposed for automation of the air-hockey setup which approximates the discontinuous impulse motion equations through a hitting force model by balancing the energies during collision. To capture the variance in the motion that stochasticity of friction introduces, the errors in the controls for the hitting flux, we model the stochastic relationship between hitting flux and object's resulting displacement, using full density modeling. Further we show the application of the learnt motion model for planning sequential hits with two or more robots, in a Golf-like principle, to enable an object to reach a location far beyond the reach of a single robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习逆击球问题
这封信提出了一个数据收集框架和一个学习模型来理解物体在受到脉冲后的运动。数据收集框架包括一个自动的双臂装置,可以互相击打一个物体,就像一个协作的空气曲棍球游戏。提出了一种可感知冲击的扩展卡尔曼滤波器,该滤波器通过平衡碰撞过程中的能量来逼近不连续冲击运动方程。为了捕捉由摩擦随机性引入的运动方差,以及碰撞通量控制中的误差,我们使用全密度建模建立了碰撞通量与物体最终位移之间的随机关系。此外,我们展示了学习到的运动模型的应用,用于规划两个或更多机器人的连续击球,以类似高尔夫的原则,使物体能够到达远远超出单个机器人范围的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Design and Actuation of a Multipole Ring Magnet for Navigating Endovascular Magnetic Instruments Online Modifications of High-Level Swarm Behaviors Data-Efficient Constrained Robot Learning With Probabilistic Lagrangian Control IEEE Robotics and Automation Society Information IEEE Robotics and Automation Letters Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1