W-ControlUDA: Weather-Controllable Diffusion-assisted Unsupervised Domain Adaptation for Semantic Segmentation

IF 5.3 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-02-24 DOI:10.1109/LRA.2025.3544925
Fengyi Shen;Li Zhou;Kagan Kuecuekaytekin;George Basem Fouad Eskandar;Ziyuan Liu;He Wang;Alois Knoll
{"title":"W-ControlUDA: Weather-Controllable Diffusion-assisted Unsupervised Domain Adaptation for Semantic Segmentation","authors":"Fengyi Shen;Li Zhou;Kagan Kuecuekaytekin;George Basem Fouad Eskandar;Ziyuan Liu;He Wang;Alois Knoll","doi":"10.1109/LRA.2025.3544925","DOIUrl":null,"url":null,"abstract":"Image generation has emerged as a potent strategy to enrich training data for unsupervised domain adaptation (UDA) of semantic segmentation in adverse weathers due to the scarcity of labelled target domain data. Previous UDA works commonly utilize generative adversarial networks (GANs) to translate images from the source to the target domain to enhance UDA training. However, these GANs, trained from scratch in an unpaired manner, produce sub-optimal image quality and lack multi-weather controllability. Consequently, controllable data generation for diverse weather scenarios remains underexplored. The recent strides in text-to-image diffusion models (DM) enables high fidelity diverse image generation conditioned on semantic labels. However, such DMs must be trained in a paired manner, i.e., image and label pairs, which poses huge challenge to the UDA setting where target domain labels are missing. This work addresses two key questions: <italic>What is an optimal approach to train DMs for UDA, and how can the generated data best enhance UDA performance?</i> We introduce W-ControlUDA, a diffusion-assisted framework for UDA segmentation in adverse weather. W-ControlUDA involves two steps: DM training for data augmentation and UDA training using the generated data. Unlike previous unpaired training, our method conditions the DM on target predictions from a pre-trained segmentor, addressing the lack of target labels. We propose UDAControlNet for high-fidelity cross-domain and intra-domain data generation under adverse weathers. In UDA training, a label filtering mechanism is introduced to ensure more reliable results. W-ControlUDA helps UDA achieve a new milestone (72.8 mIoU) on the popular Cityscapes-to-ACDC benchmark and notably improves the model's generalization on 5 other benchmarks.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4204-4211"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10900417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10900417/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Image generation has emerged as a potent strategy to enrich training data for unsupervised domain adaptation (UDA) of semantic segmentation in adverse weathers due to the scarcity of labelled target domain data. Previous UDA works commonly utilize generative adversarial networks (GANs) to translate images from the source to the target domain to enhance UDA training. However, these GANs, trained from scratch in an unpaired manner, produce sub-optimal image quality and lack multi-weather controllability. Consequently, controllable data generation for diverse weather scenarios remains underexplored. The recent strides in text-to-image diffusion models (DM) enables high fidelity diverse image generation conditioned on semantic labels. However, such DMs must be trained in a paired manner, i.e., image and label pairs, which poses huge challenge to the UDA setting where target domain labels are missing. This work addresses two key questions: What is an optimal approach to train DMs for UDA, and how can the generated data best enhance UDA performance? We introduce W-ControlUDA, a diffusion-assisted framework for UDA segmentation in adverse weather. W-ControlUDA involves two steps: DM training for data augmentation and UDA training using the generated data. Unlike previous unpaired training, our method conditions the DM on target predictions from a pre-trained segmentor, addressing the lack of target labels. We propose UDAControlNet for high-fidelity cross-domain and intra-domain data generation under adverse weathers. In UDA training, a label filtering mechanism is introduced to ensure more reliable results. W-ControlUDA helps UDA achieve a new milestone (72.8 mIoU) on the popular Cityscapes-to-ACDC benchmark and notably improves the model's generalization on 5 other benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
W-ControlUDA:用于语义分割的天气可控扩散辅助无监督领域适应技术
由于标记目标域数据的稀缺性,图像生成已成为一种有效的策略,以丰富在恶劣天气下语义分割的无监督域自适应(UDA)训练数据。以前的UDA工作通常使用生成对抗网络(GANs)将图像从源域转换到目标域,以增强UDA训练。然而,这些gan以非配对的方式从头开始训练,产生的图像质量不是最优,并且缺乏多天气可控性。因此,各种天气情景的可控数据生成仍未得到充分探索。文本到图像扩散模型(DM)的最新进展使得基于语义标签的高保真多样图像生成成为可能。然而,这种dm必须以成对的方式进行训练,即图像和标签对,这对缺少目标域标签的UDA设置提出了巨大的挑战。这项工作解决了两个关键问题:什么是训练用于UDA的dm的最佳方法,以及生成的数据如何最好地提高UDA性能?我们介绍了W-ControlUDA,这是一个扩散辅助框架,用于在恶劣天气下进行UDA分割。W-ControlUDA包括两个步骤:用于数据增强的DM训练和使用生成数据的UDA训练。与之前的非配对训练不同,我们的方法根据预训练的分割器的目标预测来限制DM,解决了缺乏目标标签的问题。我们提出UDAControlNet用于在恶劣天气下高保真的跨域和域内数据生成。在UDA训练中,引入了标签过滤机制,以确保更可靠的结果。W-ControlUDA帮助UDA在流行的cityscape -to- acdc基准测试上达到了一个新的里程碑(72.8 mIoU),并显著提高了模型在其他5个基准测试上的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Design and Actuation of a Multipole Ring Magnet for Navigating Endovascular Magnetic Instruments Online Modifications of High-Level Swarm Behaviors A Robust and Efficient Visual-Inertial SLAM Using Hybrid Point-Line Features Autonomous Robotic Bone Micro-Milling System With Automatic Calibration and 3D Surface Fitting Data-Efficient Constrained Robot Learning With Probabilistic Lagrangian Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1