Exploring Frontiers of Polar-Domain Codebooks for Near-Field Channel Estimation and Beam Training: A comprehensive analysis, case studies, and implications for 6G

IF 9.4 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Magazine Pub Date : 2025-03-21 DOI:10.1109/MSP.2024.3508474
Asmaa Abdallah;Ahmed Hussain;Abdulkadir Celik;Ahmed M. Eltawil
{"title":"Exploring Frontiers of Polar-Domain Codebooks for Near-Field Channel Estimation and Beam Training: A comprehensive analysis, case studies, and implications for 6G","authors":"Asmaa Abdallah;Ahmed Hussain;Abdulkadir Celik;Ahmed M. Eltawil","doi":"10.1109/MSP.2024.3508474","DOIUrl":null,"url":null,"abstract":"As sixth-generation (6G) wireless networks approach, leveraging the millimeter-wave (mmWave) and terahertz (THz) bands’ abundant spectrum becomes crucial, promising ultrahigh data rates and enabling immersive communication experiences. This transformation, characterized by the integration of ultramassive multi-in multi-out (UM-MIMO) systems, facilitates significant increases in throughput and capacity by utilizing densely packed antenna arrays. The resulting shift from traditional far-field communication, with its planar wavefronts, to near-field communication, where spherical wavefronts predominate, necessitates a reevaluation of conventional beamforming and channel estimation methods. Effective codebooks, based on the spherical wavefront phenomenon, are vital for both channel estimation and beam focusing, providing predefined sets of beam steering vectors or codewords needed to efficiently probe the channel and direct the beams toward desired directions. This article explores the development of polar-domain codebooks tailored for these near-field conditions. We reveal the exact boundaries of near-field communication, design polar codebooks based on our sparsity analysis findings, and demonstrate their efficacy in channel estimation and beam training without relying on user range information. These codebooks significantly reduce dimensionality, offering a practical solution to the challenges of minimal pilot overhead. Through two case studies, one on channel estimation and the other on beam training using the defined polar-domain codebooks, we illustrate the potential of these methodologies to enhance system performance and spectral efficiency in near-field wireless systems.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 1","pages":"45-59"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934779/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As sixth-generation (6G) wireless networks approach, leveraging the millimeter-wave (mmWave) and terahertz (THz) bands’ abundant spectrum becomes crucial, promising ultrahigh data rates and enabling immersive communication experiences. This transformation, characterized by the integration of ultramassive multi-in multi-out (UM-MIMO) systems, facilitates significant increases in throughput and capacity by utilizing densely packed antenna arrays. The resulting shift from traditional far-field communication, with its planar wavefronts, to near-field communication, where spherical wavefronts predominate, necessitates a reevaluation of conventional beamforming and channel estimation methods. Effective codebooks, based on the spherical wavefront phenomenon, are vital for both channel estimation and beam focusing, providing predefined sets of beam steering vectors or codewords needed to efficiently probe the channel and direct the beams toward desired directions. This article explores the development of polar-domain codebooks tailored for these near-field conditions. We reveal the exact boundaries of near-field communication, design polar codebooks based on our sparsity analysis findings, and demonstrate their efficacy in channel estimation and beam training without relying on user range information. These codebooks significantly reduce dimensionality, offering a practical solution to the challenges of minimal pilot overhead. Through two case studies, one on channel estimation and the other on beam training using the defined polar-domain codebooks, we illustrate the potential of these methodologies to enhance system performance and spectral efficiency in near-field wireless systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Magazine
IEEE Signal Processing Magazine 工程技术-工程:电子与电气
CiteScore
27.20
自引率
0.70%
发文量
123
审稿时长
6-12 weeks
期刊介绍: EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.
期刊最新文献
Near-Field Channel Estimation and Localization: Recent developments, cooperative integration, and future directions Advanced Near-Field Radar Imaging Approaches in Security: An overview on signal processing challenges, opportunities, and future directions Exploring Frontiers of Polar-Domain Codebooks for Near-Field Channel Estimation and Beam Training: A comprehensive analysis, case studies, and implications for 6G Table of Contents Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1