Generation of Grid Surface Detector Data in the Telescope Array Experiment Using Neural Networks

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Moscow University Physics Bulletin Pub Date : 2025-03-22 DOI:10.3103/S0027134924702138
R. R. Fitagdinov, I. V. Kharuk
{"title":"Generation of Grid Surface Detector Data in the Telescope Array Experiment Using Neural Networks","authors":"R. R. Fitagdinov,&nbsp;I. V. Kharuk","doi":"10.3103/S0027134924702138","DOIUrl":null,"url":null,"abstract":"<p>In this article, we talk about generating data obtained in the Telescope Array experiment. For this we are using Wasserstein’s generative adversarial networks. Wasserstein’s generative adversarial networks were trained on data obtained using the Monte Carlo method. To improve the quality of the generation, we add the loss function for the generator, which is based on the physics of the process of spreading an extensive air shower. In the future, this network can be used to search for anomalies and for faster data generation, compared with algorithms based on the Monte Carlo method.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 2 supplement","pages":"S684 - S689"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924702138","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we talk about generating data obtained in the Telescope Array experiment. For this we are using Wasserstein’s generative adversarial networks. Wasserstein’s generative adversarial networks were trained on data obtained using the Monte Carlo method. To improve the quality of the generation, we add the loss function for the generator, which is based on the physics of the process of spreading an extensive air shower. In the future, this network can be used to search for anomalies and for faster data generation, compared with algorithms based on the Monte Carlo method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
望远镜阵列实验中网格表面探测器数据的神经网络生成
在本文中,我们讨论了如何生成望远镜阵列实验中获得的数据。为此,我们使用了沃瑟斯坦的生成对抗网络。Wasserstein的生成对抗网络是在使用蒙特卡罗方法获得的数据上训练的。为了提高发电质量,我们增加了发电机的损失函数,这是基于大面积风淋室扩散过程的物理特性。在未来,与基于蒙特卡罗方法的算法相比,该网络可用于搜索异常和更快的数据生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
期刊最新文献
Effect of Birefringence of Electromagnetic Radiation in the Field of a Relativistically Rotating Pulsar or Magnetar within the Framework of Nonlinear Vacuum Electrodynamics Some Physical Factors in the Development of Secondary Cancers in Patients Who Have Undergone Radiation Therapy Simulation of the RCS Measurements of a Conductive Disk in a Tapered Anechoic Chamber with a Lens On the Modeling of Acoustic Fields in a Marine Waveguide with Refined Boundary Conditions at the Surface and Bottom Algebraic Resonance Perturbation Theory in Problems of Nonlinear and Quantum Optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1