Pin-Type Bearing Strength and Fracture Behaviour of Ductile LPBF Ti-6Al-4V ELI Produced with Extensively Reused Powder

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY JOM Pub Date : 2025-03-12 DOI:10.1007/s11837-025-07162-z
Duncan W. Gibbons, Andre F. van der Merwe
{"title":"Pin-Type Bearing Strength and Fracture Behaviour of Ductile LPBF Ti-6Al-4V ELI Produced with Extensively Reused Powder","authors":"Duncan W. Gibbons,&nbsp;Andre F. van der Merwe","doi":"10.1007/s11837-025-07162-z","DOIUrl":null,"url":null,"abstract":"<div><p>Metal additive manufacturing is a manufacturing technology that is being investigated for critical industrial applications in industries such as aerospace, nuclear, and medical. A degree of uncertainty remains around these technologies largely due to process and material repeatability, production controls, and a lack of application-specific material data. This research aimed to investigate the effects of extensively reused (175 reuse cycles) Ti-6Al-4V ELI powder feedstock and build orientation on the produced material. Material chemistry, metallography, pin-type bearing strength, and tensile properties were characterized at different build locations and principal orientations. The literature on pin-type bearing strength for both traditionally and additively manufactured material is lacking. Such information is of value for the design of bolted structural joints and fixtures. The results suggest that although extensively reused powder feedstock does experience drift in material properties due to the reuse process, it can still fulfil feedstock material specification requirements. Furthermore, this powder is capable of producing material that meets produced material specification requirements, exhibits minimal orthotropy in mechanical properties, and has ultimate bearing strength that exceeds Ti-6Al-4V grade 5 wrought material allowables. This research provides valuable information for designing structural joints and contributes to the further industrialization of laser powder bed fusion for critical applications.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 4","pages":"1885 - 1897"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11837-025-07162-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-025-07162-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal additive manufacturing is a manufacturing technology that is being investigated for critical industrial applications in industries such as aerospace, nuclear, and medical. A degree of uncertainty remains around these technologies largely due to process and material repeatability, production controls, and a lack of application-specific material data. This research aimed to investigate the effects of extensively reused (175 reuse cycles) Ti-6Al-4V ELI powder feedstock and build orientation on the produced material. Material chemistry, metallography, pin-type bearing strength, and tensile properties were characterized at different build locations and principal orientations. The literature on pin-type bearing strength for both traditionally and additively manufactured material is lacking. Such information is of value for the design of bolted structural joints and fixtures. The results suggest that although extensively reused powder feedstock does experience drift in material properties due to the reuse process, it can still fulfil feedstock material specification requirements. Furthermore, this powder is capable of producing material that meets produced material specification requirements, exhibits minimal orthotropy in mechanical properties, and has ultimate bearing strength that exceeds Ti-6Al-4V grade 5 wrought material allowables. This research provides valuable information for designing structural joints and contributes to the further industrialization of laser powder bed fusion for critical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
期刊最新文献
Pin-Type Bearing Strength and Fracture Behaviour of Ductile LPBF Ti-6Al-4V ELI Produced with Extensively Reused Powder Meet 2025 TMS President Dan Miracle Dr. James Douglas: The Founder of American Copper In the Final Analysis TMS Meeting Headlines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1