Application of Large Language Models in Drug-Induced Osteotoxicity Prediction.

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-04-14 Epub Date: 2025-03-20 DOI:10.1021/acs.jcim.5c00275
Yi-Qi Chen, Tao Yu, Zheng-Qi Song, Chen-Yu Wang, Jiang-Tao Luo, Yong Xiao, Heng Qiu, Qing-Qing Wang, Hai-Ming Jin
{"title":"Application of Large Language Models in Drug-Induced Osteotoxicity Prediction.","authors":"Yi-Qi Chen, Tao Yu, Zheng-Qi Song, Chen-Yu Wang, Jiang-Tao Luo, Yong Xiao, Heng Qiu, Qing-Qing Wang, Hai-Ming Jin","doi":"10.1021/acs.jcim.5c00275","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced osteotoxicity refers to the harmful effects certain drugs have on the skeletal system, posing significant safety risks. These toxic effects are a key concern in clinical practice, drug development, and environmental management. However, existing toxicity assessment models lack specialized data sets and algorithms for predicting osteotoxicity. In our study, we collected osteotoxic molecules and employed various large language models, including DeepSeek and ChatGPT, alongside traditional machine learning methods to predict their properties. Among these, the DeepSeek R1 and ChatGPT o3 models achieved ACC values of 0.87 and 0.88, respectively. Our results indicate that machine learning methods can assist in evaluating the impact of harmful substances on bone health during drug development, improving safety protocols, mitigating skeletal side effects, and enhancing treatment outcomes and public safety. Furthermore, it highlights the potential of large language models in predicting molecular toxicity and their significance in the fields of health and chemical sciences.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3370-3379"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-induced osteotoxicity refers to the harmful effects certain drugs have on the skeletal system, posing significant safety risks. These toxic effects are a key concern in clinical practice, drug development, and environmental management. However, existing toxicity assessment models lack specialized data sets and algorithms for predicting osteotoxicity. In our study, we collected osteotoxic molecules and employed various large language models, including DeepSeek and ChatGPT, alongside traditional machine learning methods to predict their properties. Among these, the DeepSeek R1 and ChatGPT o3 models achieved ACC values of 0.87 and 0.88, respectively. Our results indicate that machine learning methods can assist in evaluating the impact of harmful substances on bone health during drug development, improving safety protocols, mitigating skeletal side effects, and enhancing treatment outcomes and public safety. Furthermore, it highlights the potential of large language models in predicting molecular toxicity and their significance in the fields of health and chemical sciences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大语言模型在药物诱导骨毒性预测中的应用
药物性骨毒性是指某些药物对骨骼系统产生的有害作用,具有重大的安全风险。这些毒性作用在临床实践、药物开发和环境管理中是一个关键问题。然而,现有的毒性评估模型缺乏预测骨毒性的专门数据集和算法。在我们的研究中,我们收集了骨毒性分子,并使用了各种大型语言模型,包括DeepSeek和ChatGPT,以及传统的机器学习方法来预测它们的性质。其中,DeepSeek R1和ChatGPT o3模型的ACC值分别为0.87和0.88。我们的研究结果表明,机器学习方法可以帮助评估药物开发过程中有害物质对骨骼健康的影响,改进安全方案,减轻骨骼副作用,并提高治疗结果和公共安全。此外,它强调了大语言模型在预测分子毒性方面的潜力及其在健康和化学科学领域的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Curated and Structure-Based Drug-Target Interactions Improve Underprediction of Drug Side Effects in Network Models. Computational Framework for Causal Inference in Molecular Dynamics Analysis of Lipid-Protein Interactions. pepADMET: A Novel Computational Platform For Systematic ADMET Evaluation of Peptides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1