Heavy-Atom-Free Photosensitizer-Loaded Lipid Nanocapsules for Photodynamic Therapy.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-03-20 DOI:10.1021/acsabm.4c01953
Oksana Kharchenko, Julien Gouju, Isabelle Verdu, Guillaume Bastiat, Piétrick Hudhomme, Catherine Passirani, Patrick Saulnier, Oksana Krupka
{"title":"Heavy-Atom-Free Photosensitizer-Loaded Lipid Nanocapsules for Photodynamic Therapy.","authors":"Oksana Kharchenko, Julien Gouju, Isabelle Verdu, Guillaume Bastiat, Piétrick Hudhomme, Catherine Passirani, Patrick Saulnier, Oksana Krupka","doi":"10.1021/acsabm.4c01953","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a clinically approved noninvasive treatment for cancer that employs a photosensitizer (PS) to generate cytotoxic reactive singlet oxygen (ROS) species that precisely destroy cancer cells at the targeted tumor sites. There is growing interest in the development of innovative photosensitizing agents and advanced delivery methods, offering superior phototherapeutic performance. The delivery of PS is a challenging task in PDT in regard to the high hydrophobicity of the PS molecule. To address this challenge, the incorporation of heavy-atom-free PS (HAF-PS) in effective drug delivery carriers is promising for PDT improvement. Herein, we propose a strategy to encapsulate the HAF-PS from the perylenediimide (PDI) family in the oily core of lipid nanocapsules (LNCs). The resulting HAF-PS-loaded LNCs formulations have the advantage to efficiently generate singlet oxygen (<sup>1</sup>O<sub>2</sub>) in a biorelevant environment. The LNCs formulations loaded with <b>O-PDI</b> (<b>O-PDI@LNC</b>) and <b>1S-PDI</b> (<b>1S-PDI@LNC</b>) were obtained by a solvent-free phase-inversion temperature (PIT) method. Our study demonstrates that optimized LNCs formulation loaded with <b>1S-PDI</b> acting as PS is a highly efficient approach to deliver phototherapeutic agents for PDT. Overall, it has been shown that illumination of <b>1S-PDI</b> leads to dramatic <sup>1</sup>O<sub>2</sub> production with an impressive quantum yield (<i>φSOQY</i> = 0.94) which was tested with 1,3-diphenylisobenzofuran (<b>DPBF</b>) as a specific trap. Moreover, the <sup>1</sup>O<sub>2</sub> generation was calculated in a phosphate buffer solution (<i>φSOQY</i> = 0.52) for loaded nanocarrier <b>1S-PDI@LNC</b>. <i>In vitro</i> cytotoxicity studies demonstrated a low dark toxicity of <b>1S-PDI@LNC</b> while illumination significantly enhanced its photocytotoxicity in cells. Furthermore, the cellular internalization of LNCs was demonstrated in U-87 MG cells using <b>O-PDI@LNC</b> as a model, exploiting the excellent fluorescence properties of <b>O-PDI</b>. This study has significant potential for advancing the development of HAF-PS-loaded LNCs for minimally invasive PDT.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) is a clinically approved noninvasive treatment for cancer that employs a photosensitizer (PS) to generate cytotoxic reactive singlet oxygen (ROS) species that precisely destroy cancer cells at the targeted tumor sites. There is growing interest in the development of innovative photosensitizing agents and advanced delivery methods, offering superior phototherapeutic performance. The delivery of PS is a challenging task in PDT in regard to the high hydrophobicity of the PS molecule. To address this challenge, the incorporation of heavy-atom-free PS (HAF-PS) in effective drug delivery carriers is promising for PDT improvement. Herein, we propose a strategy to encapsulate the HAF-PS from the perylenediimide (PDI) family in the oily core of lipid nanocapsules (LNCs). The resulting HAF-PS-loaded LNCs formulations have the advantage to efficiently generate singlet oxygen (1O2) in a biorelevant environment. The LNCs formulations loaded with O-PDI (O-PDI@LNC) and 1S-PDI (1S-PDI@LNC) were obtained by a solvent-free phase-inversion temperature (PIT) method. Our study demonstrates that optimized LNCs formulation loaded with 1S-PDI acting as PS is a highly efficient approach to deliver phototherapeutic agents for PDT. Overall, it has been shown that illumination of 1S-PDI leads to dramatic 1O2 production with an impressive quantum yield (φSOQY = 0.94) which was tested with 1,3-diphenylisobenzofuran (DPBF) as a specific trap. Moreover, the 1O2 generation was calculated in a phosphate buffer solution (φSOQY = 0.52) for loaded nanocarrier 1S-PDI@LNC. In vitro cytotoxicity studies demonstrated a low dark toxicity of 1S-PDI@LNC while illumination significantly enhanced its photocytotoxicity in cells. Furthermore, the cellular internalization of LNCs was demonstrated in U-87 MG cells using O-PDI@LNC as a model, exploiting the excellent fluorescence properties of O-PDI. This study has significant potential for advancing the development of HAF-PS-loaded LNCs for minimally invasive PDT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics. The Emerging Role of Halloysite Clay Nanotube Formulations in Cosmetics and Topical Drug Delivery. Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition. Heavy-Atom-Free Photosensitizer-Loaded Lipid Nanocapsules for Photodynamic Therapy. I2-Catalyzed Cascade Annulation/Cross-Dehydrogenative Coupling: Excellent Platform to Access 3-Sulfenyl Pyrazolo[1,5-a]pyrimidines with Potent Antibacterial Activity against Pseudomonas aeruginosa and Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1