{"title":"A Bio-Adaptive Janus-Adhesive Dressing with Dynamic Lubrication Overlayer for Prevention of Postoperative Infection and Adhesion.","authors":"Yuan Gao, Junchang Guo, Shuangyang Li, Liansong Ye, Binyang Lu, Jiaxin Liu, Jing Luo, Yijia Zhu, Liuxiang Chen, Tingfa Peng, Jinlong Yang, Dehui Wang, Chaoming Xie, Xu Deng, Bing Hu","doi":"10.1002/advs.202500138","DOIUrl":null,"url":null,"abstract":"<p><p>Wound postoperative infection and adhesion are prevalent clinical conditions resulting from surgical trauma. However, integrating intraoperative repair and postoperative management into a dressing suitable for wounds with unpredictable surface shapes and surroundings remains a formidable challenge. Here, we attempt to introduce a dynamic antifouling surface as wound protective covering and report an in situ formation of slippery-adhesive Janus gel (SAJG) by assembling hydrogel (N-hydrosuccinimide ester-activated powders) and elastomer (Silicon oil-infused polydimethylsiloxane). First powders can rapidly absorb interfacial water to gel and bond to tissue based on network entanglement, forming a tough adhesive hydrogel. Then precured organosilicon is applied to hydrogel and bonded together, forming a slippery elastomer. Due to the molecular polarity difference between hydrogel and elastomer, SAJG exhibits anisotropic surface behavior as evidenced by liquid repellency (hydrophilic vs. hydrophobic), and adhesion performance (bioadhesion vs. antiadhesion). Further, in vivo models are constructed and results demonstrated that the SAJG can effectively prevent bacterial infection to promote wound healing and avoid postoperative adhesion. Predictably, the morphologically adaptive SAJG with slippery and adhesive properties will have tremendous potential in addressing complex wound infections and postoperative complications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2500138"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500138","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wound postoperative infection and adhesion are prevalent clinical conditions resulting from surgical trauma. However, integrating intraoperative repair and postoperative management into a dressing suitable for wounds with unpredictable surface shapes and surroundings remains a formidable challenge. Here, we attempt to introduce a dynamic antifouling surface as wound protective covering and report an in situ formation of slippery-adhesive Janus gel (SAJG) by assembling hydrogel (N-hydrosuccinimide ester-activated powders) and elastomer (Silicon oil-infused polydimethylsiloxane). First powders can rapidly absorb interfacial water to gel and bond to tissue based on network entanglement, forming a tough adhesive hydrogel. Then precured organosilicon is applied to hydrogel and bonded together, forming a slippery elastomer. Due to the molecular polarity difference between hydrogel and elastomer, SAJG exhibits anisotropic surface behavior as evidenced by liquid repellency (hydrophilic vs. hydrophobic), and adhesion performance (bioadhesion vs. antiadhesion). Further, in vivo models are constructed and results demonstrated that the SAJG can effectively prevent bacterial infection to promote wound healing and avoid postoperative adhesion. Predictably, the morphologically adaptive SAJG with slippery and adhesive properties will have tremendous potential in addressing complex wound infections and postoperative complications.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.