Glabridin as a selective Kv2.1 inhibitor ameliorates DPN pathology by disrupting the Aβ/Kv2.1/JNK/NF-κB/NLRP3/p-Tau pathway.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Acta Pharmacologica Sinica Pub Date : 2025-03-20 DOI:10.1038/s41401-025-01526-6
Jia-Wen Xu, Lin Ma, Yu Xiang, Meng-Qing Dai, Qiu-Hui Li, Xiao-Yan Jin, Yuan Ruan, Yang Li, Jia-Ying Wang, Xu Shen
{"title":"Glabridin as a selective Kv2.1 inhibitor ameliorates DPN pathology by disrupting the Aβ/Kv2.1/JNK/NF-κB/NLRP3/p-Tau pathway.","authors":"Jia-Wen Xu, Lin Ma, Yu Xiang, Meng-Qing Dai, Qiu-Hui Li, Xiao-Yan Jin, Yuan Ruan, Yang Li, Jia-Ying Wang, Xu Shen","doi":"10.1038/s41401-025-01526-6","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic peripheral neuropathy (DPN) is a common diabetic complication. DPN has a complicated pathogenesis, and the currently clinical drugs against this disease show only limited efficacy and undesirable side effects. Thus, it is of great challenges to discover effective targets and drugs against DPN. Glabridin (GLA) is a natural prenylated isoflavone from the roots of Glycyrrhiza glabra. It exhibits a wide range of pharmacological activities including anti-inflammatory, antioxidant, cardiovascular protective, neuroprotective, hepatoprotective, anti-obesity and anti-diabetic effects, etc. In this study we investigated the beneficial effects of GLA on late-stage DPN and the underlying mechanisms. Using electrophysiological recording from CHO-Kv2.1 cells, we identified GLA as a new Kv2.1-selective inhibitor with an IC<sub>50</sub> value of 2.07 μM. We showed that oral administration of GLA (30, 60 mg·kg<sup>-1</sup>·d<sup>-1</sup>) for 4 weeks significantly improved all neurological dysfunctions and peripheral vascular dysfunctions in DPN mice. Furthermore, we demonstrated that GLA administration improved intraepidermal nerve fiber (IENF) density damage and myelin sheath injury, promoted neurite outgrowth of DRG neurons and alleviated the apoptosis of DRG neurons in DPN mice. All these beneficial effects of GLA were deprived in Kv2.1-knockdown DPN mice specifically in the DRG and sciatic nerve tissues by injection of adeno associated virus AAV8-Kv2.1-RNAi (AAV8-Kv2.1). We showed that the levels of Aβ and hyperphosphorylated tau proteins (p-Tau) were pathologically increased in serum of DPN patients. We demonstrated that Kv2.1 channels bridged Aβ to activate NLRP3 inflammasome in Schwann cells and promote p-Tau production in DRG neurons through Schwann cells/DRG neurons crosstalk. GLA interrupted Aβ/Kv2.1/NLRP3/p-Tau axis to ameliorate the DPN-like pathology in mice. Our results support that Kv2.1 inhibition is a therapeutic strategy for DPN and highlight the potential of GLA in treating this disease.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01526-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic peripheral neuropathy (DPN) is a common diabetic complication. DPN has a complicated pathogenesis, and the currently clinical drugs against this disease show only limited efficacy and undesirable side effects. Thus, it is of great challenges to discover effective targets and drugs against DPN. Glabridin (GLA) is a natural prenylated isoflavone from the roots of Glycyrrhiza glabra. It exhibits a wide range of pharmacological activities including anti-inflammatory, antioxidant, cardiovascular protective, neuroprotective, hepatoprotective, anti-obesity and anti-diabetic effects, etc. In this study we investigated the beneficial effects of GLA on late-stage DPN and the underlying mechanisms. Using electrophysiological recording from CHO-Kv2.1 cells, we identified GLA as a new Kv2.1-selective inhibitor with an IC50 value of 2.07 μM. We showed that oral administration of GLA (30, 60 mg·kg-1·d-1) for 4 weeks significantly improved all neurological dysfunctions and peripheral vascular dysfunctions in DPN mice. Furthermore, we demonstrated that GLA administration improved intraepidermal nerve fiber (IENF) density damage and myelin sheath injury, promoted neurite outgrowth of DRG neurons and alleviated the apoptosis of DRG neurons in DPN mice. All these beneficial effects of GLA were deprived in Kv2.1-knockdown DPN mice specifically in the DRG and sciatic nerve tissues by injection of adeno associated virus AAV8-Kv2.1-RNAi (AAV8-Kv2.1). We showed that the levels of Aβ and hyperphosphorylated tau proteins (p-Tau) were pathologically increased in serum of DPN patients. We demonstrated that Kv2.1 channels bridged Aβ to activate NLRP3 inflammasome in Schwann cells and promote p-Tau production in DRG neurons through Schwann cells/DRG neurons crosstalk. GLA interrupted Aβ/Kv2.1/NLRP3/p-Tau axis to ameliorate the DPN-like pathology in mice. Our results support that Kv2.1 inhibition is a therapeutic strategy for DPN and highlight the potential of GLA in treating this disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
期刊最新文献
Glabridin as a selective Kv2.1 inhibitor ameliorates DPN pathology by disrupting the Aβ/Kv2.1/JNK/NF-κB/NLRP3/p-Tau pathway. Microemulsion-based drug delivery system identifies pepper alkaloids as anti-obesity compounds. Transport mechanism and drug discovery of human monocarboxylate transporter 1. p-Coumaric acid alleviates neuronal damage in ischemic stroke mice by promoting BACH1 nuclear export and degradation. Aberrant neuronal excitation promotes neuroinflammation in the primary motor cortex of ischemic stroke mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1