The murine lung microbiome is disbalanced by the human-pathogenic fungus Aspergillus fumigatus resulting in enrichment of anaerobic bacteria.

IF 6.9 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2025-03-25 Epub Date: 2025-03-19 DOI:10.1016/j.celrep.2025.115442
Liubov Nikitashina, Xiuqiang Chen, Lukas Radosa, Kexin Li, Maria Straßburger, Bastian Seelbinder, Wibke Böhnke, Sarah Vielreicher, Sandor Nietzsche, Thorsten Heinekamp, Ilse D Jacobsen, Gianni Panagiotou, Axel A Brakhage
{"title":"The murine lung microbiome is disbalanced by the human-pathogenic fungus Aspergillus fumigatus resulting in enrichment of anaerobic bacteria.","authors":"Liubov Nikitashina, Xiuqiang Chen, Lukas Radosa, Kexin Li, Maria Straßburger, Bastian Seelbinder, Wibke Böhnke, Sarah Vielreicher, Sandor Nietzsche, Thorsten Heinekamp, Ilse D Jacobsen, Gianni Panagiotou, Axel A Brakhage","doi":"10.1016/j.celrep.2025.115442","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we report significant changes in the composition of the lung microbiome and metabolome of mice under immune suppression, infection of immunosuppressed mice with virulent and avirulent strains of the clinically important human-pathogenic fungus Aspergillus fumigatus, and treatment with the clinically used antifungal drug voriconazole. Our data also indicate the important role of the gut microbiome for lung homeostasis mediated by the plasma metabolome. In the lung microbiome, DNA sequencing indicates that infection by A. fumigatus leads to a significant increase of anaerobic bacteria, most prominently of Ligilactobacillus murinus; the latter has been confirmed by qPCR analyses. We also isolated live bacteria, including L. murinus, from the murine lower respiratory tract. Co-cultivation of L. murinus and A. fumigatus leads to a reduction in oxygen concentration accompanied by an increase of L. murinus cells, suggesting that A. fumigatus establishes a microaerophilic niche, thereby promoting growth of anaerobic bacteria.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115442"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115442","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we report significant changes in the composition of the lung microbiome and metabolome of mice under immune suppression, infection of immunosuppressed mice with virulent and avirulent strains of the clinically important human-pathogenic fungus Aspergillus fumigatus, and treatment with the clinically used antifungal drug voriconazole. Our data also indicate the important role of the gut microbiome for lung homeostasis mediated by the plasma metabolome. In the lung microbiome, DNA sequencing indicates that infection by A. fumigatus leads to a significant increase of anaerobic bacteria, most prominently of Ligilactobacillus murinus; the latter has been confirmed by qPCR analyses. We also isolated live bacteria, including L. murinus, from the murine lower respiratory tract. Co-cultivation of L. murinus and A. fumigatus leads to a reduction in oxygen concentration accompanied by an increase of L. murinus cells, suggesting that A. fumigatus establishes a microaerophilic niche, thereby promoting growth of anaerobic bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类致病真菌烟曲霉会导致小鼠肺部微生物群失衡,从而使厌氧菌大量繁殖。
在这里,我们报道了免疫抑制小鼠肺微生物组和代谢组组成的显著变化,免疫抑制小鼠感染临床重要的人类致病真菌烟曲霉的强毒株和无毒株,以及临床使用的抗真菌药物伏立康唑治疗。我们的数据还表明肠道微生物组在血浆代谢组介导的肺稳态中起重要作用。在肺部微生物组中,DNA测序表明,烟曲霉感染导致厌氧菌数量显著增加,其中最显著的是粘液芽孢杆菌(liilactobacillus murinus);后者已被qPCR分析证实。我们还从小鼠下呼吸道分离出活细菌,包括鼠乳杆菌。L. murinus与a. fumigatus共培养导致氧浓度降低,同时L. murinus细胞增加,说明a. fumigatus建立了一个微嗜氧生态位,从而促进厌氧菌的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Electroacupuncture suppresses premature ventricular complexes occurring post-myocardial infarction through corticothalamic circuit. NF1 loss of function as an alternative initiating event in pancreatic ductal adenocarcinoma. Single-cell multi-omic analyses highlight the essential role of NKX2.2-CLEC16A/endosomal pathway for human pancreatic differentiation and function. In vivo modeling of human γδ T cell ontogeny reveals terminal deoxynucleotidyl transferase as a key regulator of type 3 Vδ2 T cell development. Genomic foundations of salt tolerance in desert cyanobacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1