Alessandro Cherubini, Clelia Pistoni, Maria Chiara Iachini, Cecilia Mei, Francesco Rusconi, Valeria Peli, Mario Barilani, Dorian Tace, Noemi Elia, Fabio Lepore, Vittoria Caporale, Lorenzo Piemonti, Lorenza Lazzari
{"title":"R-spondins secreted by human pancreas-derived mesenchymal stromal cells support pancreatic organoid proliferation.","authors":"Alessandro Cherubini, Clelia Pistoni, Maria Chiara Iachini, Cecilia Mei, Francesco Rusconi, Valeria Peli, Mario Barilani, Dorian Tace, Noemi Elia, Fabio Lepore, Vittoria Caporale, Lorenzo Piemonti, Lorenza Lazzari","doi":"10.1007/s00018-025-05658-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stromal cells (MSC) play a critical role in the stem cell niche, a specialized microenvironment where stem cells reside and interact with surrounding cells and extracellular matrix components. Within the niche, MSC offer structural support, modulate inflammatory response, promote angiogenesis and release specific signaling molecules that influence stem cell behavior, including self-renewal, proliferation and differentiation. In epithelial tissues such as the intestine, stomach and liver, MSC act as an important source of cytokines and growth factors, but not much is known about their role in the pancreas. Our group has established a standardized technology for the generation of pancreatic organoids. Herein, we investigated the role of pancreatic mesenchymal stromal cells in the regulation of human pancreatic organoid proliferation and growth, using this 3D model in a co-culture system. We particularly focused on the capacity of pancreatic MSC to produce R-spondin factors, which are considered critical regulators of epithelial growth. We propose the development of a complex in vitro system that combines organoid technology and mesenchymal stromal cells, thereby promoting the assembloid new research era.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"125"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05658-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stromal cells (MSC) play a critical role in the stem cell niche, a specialized microenvironment where stem cells reside and interact with surrounding cells and extracellular matrix components. Within the niche, MSC offer structural support, modulate inflammatory response, promote angiogenesis and release specific signaling molecules that influence stem cell behavior, including self-renewal, proliferation and differentiation. In epithelial tissues such as the intestine, stomach and liver, MSC act as an important source of cytokines and growth factors, but not much is known about their role in the pancreas. Our group has established a standardized technology for the generation of pancreatic organoids. Herein, we investigated the role of pancreatic mesenchymal stromal cells in the regulation of human pancreatic organoid proliferation and growth, using this 3D model in a co-culture system. We particularly focused on the capacity of pancreatic MSC to produce R-spondin factors, which are considered critical regulators of epithelial growth. We propose the development of a complex in vitro system that combines organoid technology and mesenchymal stromal cells, thereby promoting the assembloid new research era.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered