Whole genome sequencing of 378 prostate cancer metastases reveals tissue selectivity for mismatch deficiency with potential therapeutic implications.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY Genome Medicine Pub Date : 2025-03-20 DOI:10.1186/s13073-025-01445-5
Daniel J Vis, Sander A L Palit, Marie Corradi, Edwin Cuppen, Niven Mehra, Martijn P Lolkema, Lodewyk F A Wessels, Michiel S van der Heijden, Wilbert Zwart, Andries M Bergman
{"title":"Whole genome sequencing of 378 prostate cancer metastases reveals tissue selectivity for mismatch deficiency with potential therapeutic implications.","authors":"Daniel J Vis, Sander A L Palit, Marie Corradi, Edwin Cuppen, Niven Mehra, Martijn P Lolkema, Lodewyk F A Wessels, Michiel S van der Heijden, Wilbert Zwart, Andries M Bergman","doi":"10.1186/s13073-025-01445-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Survival of patients with metastatic castration-resistant prostate cancer (mCRPC) depends on the site of metastatic dissemination.</p><p><strong>Methods: </strong>Patients with mCRPC were prospectively included in the CPCT-02 metastatic site biopsy study. We evaluated whole genome sequencing (WGS) of 378 mCRPC metastases to understand the genetic traits that affect metastatic site distribution.</p><p><strong>Results: </strong>Our findings revealed that RB1, PIK3CA, JAK1, RNF43, and TP53 mutations are the most frequent genetic determinants associated with site selectivity for metastatic outgrowth. Furthermore, we explored mutations in the non-coding genome and found that androgen receptor (AR) chromatin binding sites implicated in metastatic prostate cancer differ in mutation frequencies between metastatic sites, converging on pathways that impact DNA repair. Notably, liver and visceral metastases have a higher tumor mutational load (TML) than bone and lymph node metastases, independent of genetic traits associated with neuroendocrine differentiation. We found that TML is strongly associated with DNA mismatch repair (MMR)-deficiency features in these organs.</p><p><strong>Conclusions: </strong>Our results revealed gene mutations that are significantly associated with metastatic site selectivity and that frequencies of non-coding mutations at AR chromatin binding sites differ between metastatic sites. Immunotherapeutics are thus far unsuccessful in unselected mCRPC patients. We found a higher TML in liver and visceral metastases compared to bone and lymph node metastases. As immunotherapeutics response is associated with mutational burden, these findings may assist in selecting mCRPC patients for immunotherapy treatment based on organs affected by metastatic disease.</p><p><strong>Trial registration number: </strong>NCT01855477.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"24"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01445-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Survival of patients with metastatic castration-resistant prostate cancer (mCRPC) depends on the site of metastatic dissemination.

Methods: Patients with mCRPC were prospectively included in the CPCT-02 metastatic site biopsy study. We evaluated whole genome sequencing (WGS) of 378 mCRPC metastases to understand the genetic traits that affect metastatic site distribution.

Results: Our findings revealed that RB1, PIK3CA, JAK1, RNF43, and TP53 mutations are the most frequent genetic determinants associated with site selectivity for metastatic outgrowth. Furthermore, we explored mutations in the non-coding genome and found that androgen receptor (AR) chromatin binding sites implicated in metastatic prostate cancer differ in mutation frequencies between metastatic sites, converging on pathways that impact DNA repair. Notably, liver and visceral metastases have a higher tumor mutational load (TML) than bone and lymph node metastases, independent of genetic traits associated with neuroendocrine differentiation. We found that TML is strongly associated with DNA mismatch repair (MMR)-deficiency features in these organs.

Conclusions: Our results revealed gene mutations that are significantly associated with metastatic site selectivity and that frequencies of non-coding mutations at AR chromatin binding sites differ between metastatic sites. Immunotherapeutics are thus far unsuccessful in unselected mCRPC patients. We found a higher TML in liver and visceral metastases compared to bone and lymph node metastases. As immunotherapeutics response is associated with mutational burden, these findings may assist in selecting mCRPC patients for immunotherapy treatment based on organs affected by metastatic disease.

Trial registration number: NCT01855477.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
期刊最新文献
Predicting MHC-I ligands across alleles and species: how far can we go? Whole genome sequencing of 378 prostate cancer metastases reveals tissue selectivity for mismatch deficiency with potential therapeutic implications. A polygenic score for height identifies an unmeasured genetic predisposition among pediatric patients with idiopathic short stature. Metatranscriptomic profiling reveals pathogen and host response signatures of pediatric acute sinusitis and upper respiratory infection. MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1