Antioxidant activity of Mentha piperita phenolics on arsenic induced oxidative stress, biochemical alterations, and cyto-genotoxicity in fish, Channa punctatus.
Shraddha Dwivedi, Sunil P Trivedi, Kamlesh K Yadav, Manoj Kumar
{"title":"Antioxidant activity of Mentha piperita phenolics on arsenic induced oxidative stress, biochemical alterations, and cyto-genotoxicity in fish, Channa punctatus.","authors":"Shraddha Dwivedi, Sunil P Trivedi, Kamlesh K Yadav, Manoj Kumar","doi":"10.1007/s10695-025-01484-0","DOIUrl":null,"url":null,"abstract":"<p><p>The study aims to investigate the synergistic antioxidant effects of the phenolics present in Mentha piperita (MP) against arsenic trioxide-induced oxidative stress, biochemical alteration, and cyto-genotoxicity in the fish, Channa punctatus. The phenolic composition of MP estimated by HPLC-PDA analysis reveals the presence of phenolics, viz., ascorbic acid (Rt = 2.763 min.), rutin (Rt = 12.597 min.), caffeic acid (Rt = 18.304 min.), quercetin (Rt = 26.731 min.), luteolin (Rt = 42.709 min.), and hesperetin (Rt = 49.525 min.). The experimental setup consists of four groups (G1-G4) with a density of 12 fish in each. The fishes in G1 served as the control group, whereas the fishes in G2 were exposed to 81.73 mg/L of As<sub>2</sub>O<sub>3</sub>. Fish in group G3 were subjected to 8 mg/L MP, whereas those in group G4 were treated to 8 mg/L MP plus 81.73 mg/L As<sub>2</sub>O<sub>3</sub>. The result showed a significantly (p < 0.05) increased GOT and GPT level, increased oxidative stress markers, SOD and CAT, and induction in cyto-genotoxic markers, viz., disintegrated nucleus (DN), microcyte (MC), echinocyte (EC), and nucleoplasmic bridges (NpBs). A significant (p < 0.05) decreased GSH level in the arsenic-exposed group for all exposure periods was observed. However, in G4, all parameters reduced significantly (p < 0.05) more than in G2. The results suggest that the phenolics present in MP are synergistically able to reduce arsenic-induced oxidative damages by improving antioxidant defence, thus improving fish health status.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 2","pages":"69"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-025-01484-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study aims to investigate the synergistic antioxidant effects of the phenolics present in Mentha piperita (MP) against arsenic trioxide-induced oxidative stress, biochemical alteration, and cyto-genotoxicity in the fish, Channa punctatus. The phenolic composition of MP estimated by HPLC-PDA analysis reveals the presence of phenolics, viz., ascorbic acid (Rt = 2.763 min.), rutin (Rt = 12.597 min.), caffeic acid (Rt = 18.304 min.), quercetin (Rt = 26.731 min.), luteolin (Rt = 42.709 min.), and hesperetin (Rt = 49.525 min.). The experimental setup consists of four groups (G1-G4) with a density of 12 fish in each. The fishes in G1 served as the control group, whereas the fishes in G2 were exposed to 81.73 mg/L of As2O3. Fish in group G3 were subjected to 8 mg/L MP, whereas those in group G4 were treated to 8 mg/L MP plus 81.73 mg/L As2O3. The result showed a significantly (p < 0.05) increased GOT and GPT level, increased oxidative stress markers, SOD and CAT, and induction in cyto-genotoxic markers, viz., disintegrated nucleus (DN), microcyte (MC), echinocyte (EC), and nucleoplasmic bridges (NpBs). A significant (p < 0.05) decreased GSH level in the arsenic-exposed group for all exposure periods was observed. However, in G4, all parameters reduced significantly (p < 0.05) more than in G2. The results suggest that the phenolics present in MP are synergistically able to reduce arsenic-induced oxidative damages by improving antioxidant defence, thus improving fish health status.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.