{"title":"Surface Modification of Wood Activated Carbon by CVD of NH<sub>3</sub> to Improve Its Micropore Volume and Adsorption to Carbamazepine.","authors":"Xun Zhou, Yue Zhong, Li He, Chengxin Sun, Guoxue Xiao, Hong Luo, Rongfen Ran, Changying Wu, Ting Zhang, Shuiping Ou, Yongke Zhong","doi":"10.2147/IJN.S495746","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study enhanced wood-activated carbon using ammonia chemical vapor deposition (NH<sub>3</sub>-CVD) to improve its adsorption properties for carbamazepine (CBZ).</p><p><strong>Methods: </strong>Modification was done in a vacuum tube sintering furnace. We used X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method, and Fourier Transform Infrared Spectroscopy (FTIR) for characterization and analysis. Kinetic adsorption and isothermal adsorption tests were carried out by UV spectrophotometry.</p><p><strong>Results: </strong>NH<sub>3</sub>-CVD significantly increased the micropore volume and surface area, notably in the <i>W-6</i> sample, and raised the nitrogen content on the carbon surface. The adsorption capacity of modified activated carbon (<i>W-7</i>) reached 130.81 mg/g, outperforming the unmodified (<i>W-0</i>) at 72.46 mg/g. FTIR results indicated strong hydrogen bonding with CBZ molecules.</p><p><strong>Conclusion: </strong>NH<sub>3</sub>-CVD modification improves CBZ adsorption on wood activated carbon by increasing micropore volume and enhancing hydrogen bonding, confirming a single-layer adsorption on a heterogeneous surface.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"3251-3267"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S495746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study enhanced wood-activated carbon using ammonia chemical vapor deposition (NH3-CVD) to improve its adsorption properties for carbamazepine (CBZ).
Methods: Modification was done in a vacuum tube sintering furnace. We used X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method, and Fourier Transform Infrared Spectroscopy (FTIR) for characterization and analysis. Kinetic adsorption and isothermal adsorption tests were carried out by UV spectrophotometry.
Results: NH3-CVD significantly increased the micropore volume and surface area, notably in the W-6 sample, and raised the nitrogen content on the carbon surface. The adsorption capacity of modified activated carbon (W-7) reached 130.81 mg/g, outperforming the unmodified (W-0) at 72.46 mg/g. FTIR results indicated strong hydrogen bonding with CBZ molecules.
Conclusion: NH3-CVD modification improves CBZ adsorption on wood activated carbon by increasing micropore volume and enhancing hydrogen bonding, confirming a single-layer adsorption on a heterogeneous surface.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.