Quantitative Systems Pharmacology Development and Application in Neuroscience.

Q1 Pharmacology, Toxicology and Pharmaceutics Handbook of experimental pharmacology Pub Date : 2025-03-21 DOI:10.1007/164_2024_739
Hugo Geerts
{"title":"Quantitative Systems Pharmacology Development and Application in Neuroscience.","authors":"Hugo Geerts","doi":"10.1007/164_2024_739","DOIUrl":null,"url":null,"abstract":"<p><p>Successful clinical development of therapeutics in neurology and psychiatry is challenging due to the complexity of the brain, the lack of validated surrogate markers and the nature of clinical assessments. On the other hand, tremendous advances have been made in unraveling the neurophysiology of the human brain thanks to technical developments in noninvasive biomarkers in both healthy and pathological conditions.Quantitative systems pharmacology (QSP) aims to integrate this increasing knowledge into a mechanistic model of key biological processes that drive clinical phenotypes with the objective to support research and development of successful therapies. This chapter describes both modeling of molecular pathways resulting in measurable biomarker changes, similar to modeling in other indications, as well as extrapolating in a mechanistic way these biomarker outcomes to predict changes in relevant functional clinical scales.Simulating the effect of therapeutic interventions on clinical scales uses the modeling methodology of computational neurosciences, which is based on the premise that human behavior is driven by firing activity of specific neuronal networks. While driven by pathology, the clinical behavior can also be influenced by various medications and common genotype variants. To address this occurrence, computational neuropharmacology QSP models can be developed and, in principle, applied as virtual twins, which are in silico clones of real patients.Overall, central nervous system (CNS) QSP is an important additional tool for supporting research and development from the preclinical stage to post-marketing studies and clinical practice. Overall, CNS QSP is an important additional tool for supporting research and development from the preclinical stage to post-marketing studies and clinical practice.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2024_739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Successful clinical development of therapeutics in neurology and psychiatry is challenging due to the complexity of the brain, the lack of validated surrogate markers and the nature of clinical assessments. On the other hand, tremendous advances have been made in unraveling the neurophysiology of the human brain thanks to technical developments in noninvasive biomarkers in both healthy and pathological conditions.Quantitative systems pharmacology (QSP) aims to integrate this increasing knowledge into a mechanistic model of key biological processes that drive clinical phenotypes with the objective to support research and development of successful therapies. This chapter describes both modeling of molecular pathways resulting in measurable biomarker changes, similar to modeling in other indications, as well as extrapolating in a mechanistic way these biomarker outcomes to predict changes in relevant functional clinical scales.Simulating the effect of therapeutic interventions on clinical scales uses the modeling methodology of computational neurosciences, which is based on the premise that human behavior is driven by firing activity of specific neuronal networks. While driven by pathology, the clinical behavior can also be influenced by various medications and common genotype variants. To address this occurrence, computational neuropharmacology QSP models can be developed and, in principle, applied as virtual twins, which are in silico clones of real patients.Overall, central nervous system (CNS) QSP is an important additional tool for supporting research and development from the preclinical stage to post-marketing studies and clinical practice. Overall, CNS QSP is an important additional tool for supporting research and development from the preclinical stage to post-marketing studies and clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Handbook of experimental pharmacology
Handbook of experimental pharmacology Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.20
自引率
0.00%
发文量
54
期刊介绍: The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.
期刊最新文献
Integrating QSP and ML to Facilitate Drug Development and Personalized Medicine. Activity-Based Profiling of Retaining Glycosidases in Disease Diagnosis and Their Application in Drug Discovery. Diagnostic and Therapeutic Approaches in Congenital Disorders of Glycosylation. Role of Antibody Glycosylation in Health, Disease, and Therapy. A Framework for Quantitative Systems Pharmacology Model Execution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1