{"title":"Additively Manufactured Zirconia Periodontal Splint Integrated Prosthesis: A Proof-of-Concept.","authors":"Ziyan Wang, Lvhua Guo, Ke Deng, Ting Yu, Ping Li","doi":"10.1016/j.jdent.2025.105701","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To provide a digital workflow for designing custom zirconia periodontal splints using material jetting (MJ) technology to support and rehabilitate periodontally compromised anterior teeth.</p><p><strong>Methods: </strong>Initially, the maxillary and mandibular teeth were scanned using a Trios3 intraoral scanner (IOS). Subsequently, the periodontal splint was digitally designed using a computer-aided design software. Then, a zirconia periodontal splint was produced using MJ technology with a three-dimensional (3D) printer (Carmel 1400C; XJet Ltd). Additionally, the trueness of the periodontal splint was analyzed using 3D detection software (Geomagic Control X 2018). Finally, the periodontal splint was adhered using resin cement.</p><p><strong>Results: </strong>In terms of trueness, the intaglio surface and the prosthesis of the periodontal splint matched well, whereas the lingual surface showed some deviation areas. The trueness root mean square (RMS) value of the splint was 57.7 μm and the deviation remained within ± 200 μm. For clinical treatment, the periodontal splint was precisely bonded and achieved the effect of supporting and rehabilitating periodontally compromised anterior teeth. After six months of treatment, the follow-up results showed that the splint remained intact, with no further absorption of the alveolar bone.</p><p><strong>Conclusions: </strong>Additively manufactured zirconia periodontal splints exhibit good trueness and aesthetics. Periodontal splints can achieve precise bonding and maintain long-term bonding stability, and can help stabilize loosened teeth and prevent further absorption by the alveolar bone.</p><p><strong>Clinical significance: </strong>This proof-of-concept outlines a digital workflow for designing zirconia periodontal splints using MJ technology to improve outcomes of periodontitis treatments. Moreover, the adhesive stability and efficacy of periodontitis treatment using the periodontal splint were preliminarily verified.</p>","PeriodicalId":15585,"journal":{"name":"Journal of dentistry","volume":" ","pages":"105701"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jdent.2025.105701","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To provide a digital workflow for designing custom zirconia periodontal splints using material jetting (MJ) technology to support and rehabilitate periodontally compromised anterior teeth.
Methods: Initially, the maxillary and mandibular teeth were scanned using a Trios3 intraoral scanner (IOS). Subsequently, the periodontal splint was digitally designed using a computer-aided design software. Then, a zirconia periodontal splint was produced using MJ technology with a three-dimensional (3D) printer (Carmel 1400C; XJet Ltd). Additionally, the trueness of the periodontal splint was analyzed using 3D detection software (Geomagic Control X 2018). Finally, the periodontal splint was adhered using resin cement.
Results: In terms of trueness, the intaglio surface and the prosthesis of the periodontal splint matched well, whereas the lingual surface showed some deviation areas. The trueness root mean square (RMS) value of the splint was 57.7 μm and the deviation remained within ± 200 μm. For clinical treatment, the periodontal splint was precisely bonded and achieved the effect of supporting and rehabilitating periodontally compromised anterior teeth. After six months of treatment, the follow-up results showed that the splint remained intact, with no further absorption of the alveolar bone.
Conclusions: Additively manufactured zirconia periodontal splints exhibit good trueness and aesthetics. Periodontal splints can achieve precise bonding and maintain long-term bonding stability, and can help stabilize loosened teeth and prevent further absorption by the alveolar bone.
Clinical significance: This proof-of-concept outlines a digital workflow for designing zirconia periodontal splints using MJ technology to improve outcomes of periodontitis treatments. Moreover, the adhesive stability and efficacy of periodontitis treatment using the periodontal splint were preliminarily verified.
期刊介绍:
The Journal of Dentistry has an open access mirror journal The Journal of Dentistry: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Dentistry is the leading international dental journal within the field of Restorative Dentistry. Placing an emphasis on publishing novel and high-quality research papers, the Journal aims to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis.
Topics covered include the management of dental disease, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.
The Journal of Dentistry will publish original scientific research papers including short communications. It is also interested in publishing review articles and leaders in themed areas which will be linked to new scientific research. Conference proceedings are also welcome and expressions of interest should be communicated to the Editor.