Determinants and predictors of early re-admission of patients with hyperglycemic crises: a machine learning-based analysis.

IF 1.8 Q4 ENDOCRINOLOGY & METABOLISM Journal of Diabetes and Metabolic Disorders Pub Date : 2025-03-18 eCollection Date: 2025-06-01 DOI:10.1007/s40200-025-01586-9
Olubola Titilope Adegbosin, Michael Adeyemi Olamoyegun, Sunday Olakunle Olarewaju
{"title":"Determinants and predictors of early re-admission of patients with hyperglycemic crises: a machine learning-based analysis.","authors":"Olubola Titilope Adegbosin, Michael Adeyemi Olamoyegun, Sunday Olakunle Olarewaju","doi":"10.1007/s40200-025-01586-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The predictors of early re-admission of patients with diabetes mellitus (DM) have been studied with classical statistical techniques. Considering the increasing application of artificial intelligence to drive advances in medicine, this study aimed to leverage machine learning techniques to identify patients at risk of early re-admission after being admitted for hyperglycemic crises.</p><p><strong>Methods: </strong>We extracted relevant data from a publicly available dataset of patients with DM who were admitted in U.S. hospitals from 1999 to 2008. The target variable was re-admission within 30 days. Point-biserial and chi-square tests were used to assess correlations between the input and target variables. Three machine learning models were initially deployed; the model with the best recall for the positive class was selected.</p><p><strong>Results: </strong>The prevalence of early re-admission among the patients was 13.32%. Statistical tests revealed weak correlations between early re-admission and race, sex, age, use of antidiabetic medication, and numbers of non-laboratory procedures, medications, diagnoses, and visits to the emergency and inpatient departments in the previous year (all <i>p</i> < 0.05). Extreme gradient boosting classifier predicted early-re-admission with 79% recall for the positive class. The area under the receiver-operating characteristic curve was 0.78. Age and numbers of medications, emergency and inpatient visits in the previous year, and non-laboratory procedures, were the most important features for the model's prediction.</p><p><strong>Conclusions: </strong>Our findings highlight the usefulness of machine learning in making clinical decisions in the management of patients with diabetes, especially when classical statistical methods do not yield much significant information.</p>","PeriodicalId":15635,"journal":{"name":"Journal of Diabetes and Metabolic Disorders","volume":"24 1","pages":"85"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes and Metabolic Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40200-025-01586-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The predictors of early re-admission of patients with diabetes mellitus (DM) have been studied with classical statistical techniques. Considering the increasing application of artificial intelligence to drive advances in medicine, this study aimed to leverage machine learning techniques to identify patients at risk of early re-admission after being admitted for hyperglycemic crises.

Methods: We extracted relevant data from a publicly available dataset of patients with DM who were admitted in U.S. hospitals from 1999 to 2008. The target variable was re-admission within 30 days. Point-biserial and chi-square tests were used to assess correlations between the input and target variables. Three machine learning models were initially deployed; the model with the best recall for the positive class was selected.

Results: The prevalence of early re-admission among the patients was 13.32%. Statistical tests revealed weak correlations between early re-admission and race, sex, age, use of antidiabetic medication, and numbers of non-laboratory procedures, medications, diagnoses, and visits to the emergency and inpatient departments in the previous year (all p < 0.05). Extreme gradient boosting classifier predicted early-re-admission with 79% recall for the positive class. The area under the receiver-operating characteristic curve was 0.78. Age and numbers of medications, emergency and inpatient visits in the previous year, and non-laboratory procedures, were the most important features for the model's prediction.

Conclusions: Our findings highlight the usefulness of machine learning in making clinical decisions in the management of patients with diabetes, especially when classical statistical methods do not yield much significant information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Diabetes and Metabolic Disorders
Journal of Diabetes and Metabolic Disorders Medicine-Internal Medicine
CiteScore
4.80
自引率
3.60%
发文量
210
期刊介绍: Journal of Diabetes & Metabolic Disorders is a peer reviewed journal which publishes original clinical and translational articles and reviews in the field of endocrinology and provides a forum of debate of the highest quality on these issues. Topics of interest include, but are not limited to, diabetes, lipid disorders, metabolic disorders, osteoporosis, interdisciplinary practices in endocrinology, cardiovascular and metabolic risk, aging research, obesity, traditional medicine, pychosomatic research, behavioral medicine, ethics and evidence-based practices.As of Jan 2018 the journal is published by Springer as a hybrid journal with no article processing charges. All articles published before 2018 are available free of charge on springerlink.Unofficial 2017 2-year Impact Factor: 1.816.
期刊最新文献
Determinants and predictors of early re-admission of patients with hyperglycemic crises: a machine learning-based analysis. Assessment of gut microbiota in the elderly with sarcopenic obesity: a case-control study. Associations between adherence to plant-based diets and osteoporosis and visceral fat area in middle-aged adults: evidence of a large population-based study. Cardiovascular risk patterns through AI-enhanced clustering of longitudinal health data. Phase angle as an independent predictor of sarcopenia and glycemic control in older adults with type 2 diabetes: a cross-sectional observational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1