New and revised gene ontology biological process terms describe multiorganism interactions critical for understanding microbial pathogenesis and sequences of concern.

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2025-03-21 DOI:10.1186/s13326-025-00323-8
Gene Godbold, Jody Proescher, Pascale Gaudet
{"title":"New and revised gene ontology biological process terms describe multiorganism interactions critical for understanding microbial pathogenesis and sequences of concern.","authors":"Gene Godbold, Jody Proescher, Pascale Gaudet","doi":"10.1186/s13326-025-00323-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a new framework from the United States government for screening synthetic nucleic acids. Beginning in October of 2026, it calls for the screening of sequences 50 nucleotides or greater in length that are known to contribute to pathogenicity or toxicity for humans, regardless of the taxa from which it originates. Distinguishing sequences that encode pathogenic and toxic functions from those that lack them is not simple.</p><p><strong>Objectives: </strong>Our project scope was to discern, describe, and catalog sequences involved in microbial pathogenesis from the scientific literature. We recognize a need for better terminology to designate pathogenic functions that are relevant across the entire range of existing parasites.</p><p><strong>Methods: </strong>We canvassed publications investigating microbial pathogens of humans, other animals, and some plants to collect thousands of sequences that enable the exploitation of hosts. We compared sequences to each other, grouping them according to what host biological processes they subvert and the consequence(s) for the host. We developed terms to capture many of the varied pathogenic functions for sequences employed by parasitic microbes for host exploitation and applied these terms in a systematic manner to our dataset of sequences.</p><p><strong>Results/conclusions: </strong>The enhanced and expanded terms enable a quick and pertinent evaluation of a sequence's ability to endow a microbe with pathogenic function when they are appropriately applied to relevant sequences. This will allow providers of synthetic nucleic acids to rapidly assess sequences ordered by their customers for pathogenic capacity. This will help fulfill the new US government guidance.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"16 1","pages":"4"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-025-00323-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There is a new framework from the United States government for screening synthetic nucleic acids. Beginning in October of 2026, it calls for the screening of sequences 50 nucleotides or greater in length that are known to contribute to pathogenicity or toxicity for humans, regardless of the taxa from which it originates. Distinguishing sequences that encode pathogenic and toxic functions from those that lack them is not simple.

Objectives: Our project scope was to discern, describe, and catalog sequences involved in microbial pathogenesis from the scientific literature. We recognize a need for better terminology to designate pathogenic functions that are relevant across the entire range of existing parasites.

Methods: We canvassed publications investigating microbial pathogens of humans, other animals, and some plants to collect thousands of sequences that enable the exploitation of hosts. We compared sequences to each other, grouping them according to what host biological processes they subvert and the consequence(s) for the host. We developed terms to capture many of the varied pathogenic functions for sequences employed by parasitic microbes for host exploitation and applied these terms in a systematic manner to our dataset of sequences.

Results/conclusions: The enhanced and expanded terms enable a quick and pertinent evaluation of a sequence's ability to endow a microbe with pathogenic function when they are appropriately applied to relevant sequences. This will allow providers of synthetic nucleic acids to rapidly assess sequences ordered by their customers for pathogenic capacity. This will help fulfill the new US government guidance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
New and revised gene ontology biological process terms describe multiorganism interactions critical for understanding microbial pathogenesis and sequences of concern. Enriched knowledge representation in biological fields: a case study of literature-based discovery in Alzheimer's disease. Gene expression knowledge graph for patient representation and diabetes prediction. Expanding the concept of ID conversion in TogoID by introducing multi-semantic and label features. FAIR Data Cube, a FAIR data infrastructure for integrated multi-omics data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1