Katarzyna H Masłowska, Ronald P Wong, Helle D Ulrich, Vincent Pagès
{"title":"Post-replicative lesion processing limits DNA damage-induced mutagenesis.","authors":"Katarzyna H Masłowska, Ronald P Wong, Helle D Ulrich, Vincent Pagès","doi":"10.1093/nar/gkaf198","DOIUrl":null,"url":null,"abstract":"<p><p>DNA lesions are a threat to genome stability. To cope with them during DNA replication, cells have evolved lesion bypass mechanisms: Translesion Synthesis (TLS), which allows the cell to insert a nucleotide directly opposite the lesion, with the risk of introducing a mutation, and error-free damage avoidance (DA), which uses homologous recombination to retrieve the genetic information from the sister chromatid. In this study, we investigate the timing of lesion bypass in yeast and its implications for the accuracy of the process. Our findings reveal that DNA polymerase η can bypass common, UV-induced cyclobutane pyrimidine dimers at the fork, immediately after encountering the blocking lesion. In contrast, TLS at (6-4) photoproducts and bulky G-AAF adducts, mediated by Rev1 and Pol ζ, takes place behind the fork, at post-replicative gaps that are generated downstream of the lesion after repriming. We show that in this latter situation, TLS competes with the DA pathway, thus reducing overall mutagenicity of damage bypass. Additionally, our study demonstrates that Exo1 nuclease influences the balance between TLS and DA by modulating the size of the post-replicative gaps.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 6","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925729/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf198","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA lesions are a threat to genome stability. To cope with them during DNA replication, cells have evolved lesion bypass mechanisms: Translesion Synthesis (TLS), which allows the cell to insert a nucleotide directly opposite the lesion, with the risk of introducing a mutation, and error-free damage avoidance (DA), which uses homologous recombination to retrieve the genetic information from the sister chromatid. In this study, we investigate the timing of lesion bypass in yeast and its implications for the accuracy of the process. Our findings reveal that DNA polymerase η can bypass common, UV-induced cyclobutane pyrimidine dimers at the fork, immediately after encountering the blocking lesion. In contrast, TLS at (6-4) photoproducts and bulky G-AAF adducts, mediated by Rev1 and Pol ζ, takes place behind the fork, at post-replicative gaps that are generated downstream of the lesion after repriming. We show that in this latter situation, TLS competes with the DA pathway, thus reducing overall mutagenicity of damage bypass. Additionally, our study demonstrates that Exo1 nuclease influences the balance between TLS and DA by modulating the size of the post-replicative gaps.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.