Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies.

IF 4 3区 医学 Q2 VIROLOGY Virology Journal Pub Date : 2025-03-20 DOI:10.1186/s12985-025-02683-0
Dong-Po Wei, Wei-Wei Jiang, Chang-Xing Chen, Zi-Yang Chen, Fang-Qing Zhou, Yu Zhang, Jian Lu
{"title":"Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies.","authors":"Dong-Po Wei, Wei-Wei Jiang, Chang-Xing Chen, Zi-Yang Chen, Fang-Qing Zhou, Yu Zhang, Jian Lu","doi":"10.1186/s12985-025-02683-0","DOIUrl":null,"url":null,"abstract":"<p><p>We identified 14 key genes associated with mitochondrial autophagy in sepsis through differential analysis of the dataset and then analysed the identified genes for functional enrichment. The analysis of key genes and deeper analysis of key genes by molecular typing, Weighted Gene Correlation Network Analysis (WGCNA) and ceRNA were also carried out. We have also validated these key genes with clinical data. Finally, sepsis diagnostic models are constructed by combining key genes with machine learning methods. In addition, we discuss the importance of the immune system in sepsis and its relationship with signature genes, which opens up new directions for studying the role of the immune system in sepsis. Overall, our study adds new ideas to the diagnosis and treatment of sepsis.</p>","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":"22 1","pages":"81"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-025-02683-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We identified 14 key genes associated with mitochondrial autophagy in sepsis through differential analysis of the dataset and then analysed the identified genes for functional enrichment. The analysis of key genes and deeper analysis of key genes by molecular typing, Weighted Gene Correlation Network Analysis (WGCNA) and ceRNA were also carried out. We have also validated these key genes with clinical data. Finally, sepsis diagnostic models are constructed by combining key genes with machine learning methods. In addition, we discuss the importance of the immune system in sepsis and its relationship with signature genes, which opens up new directions for studying the role of the immune system in sepsis. Overall, our study adds new ideas to the diagnosis and treatment of sepsis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virology Journal
Virology Journal 医学-病毒学
CiteScore
7.40
自引率
2.10%
发文量
186
审稿时长
1 months
期刊介绍: Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies. The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.
期刊最新文献
Increase of VEGF and Fibronectin expression and ultrastructural alterations of intercellular junctions in a swab negative patient after SARS-COV-2 infection. Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies. Nucleos(t)ide analogs continuation is not associated with a lower risk of HBsAg seroreversion following PEG-IFN-induced HBsAg loss. Improvement of Nanopore sequencing provides access to high quality genomic data for multi-component CRESS-DNA plant viruses. Virome diversity and potential sharing of wild mammals in a biodiversity hotspot, Yunnan, China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1