Ultrasound quantitative characterization of tendinopathy with shear wave elastography in an ex vivo porcine tendon model.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2025-03-20 DOI:10.1186/s41747-024-00542-1
Quinn Steiner, Albert Wang, Laura Slane, Scott Hetzel, Ryan DeWall, Darryl Thelen, Kenneth Lee
{"title":"Ultrasound quantitative characterization of tendinopathy with shear wave elastography in an ex vivo porcine tendon model.","authors":"Quinn Steiner, Albert Wang, Laura Slane, Scott Hetzel, Ryan DeWall, Darryl Thelen, Kenneth Lee","doi":"10.1186/s41747-024-00542-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early detection and treatment of tendinopathy may prevent progression to partial tears or complete rupture. Shear wave elastography (SWE) may help address the need for better tendon pathology characterization. This study aimed to quantify the effect of structural damage in an ex vivo animal tendinopathy model using SWE.</p><p><strong>Methods: </strong>Forty-two porcine flexor tendons were injected with a 0.05-mL bolus of 1.5% collagenase solution to induce focal structural damage without surface tears. Control tendons were injected with saline (n = 42). Twenty-one tendons from each group were incubated at 37 °C for 3.5 h, while the remaining 21 from each group were incubated for 7 h. Each group was then divided into three groups of seven, and tendon incisions were made at 25%, 50%, and 75% of the tendon thickness. Tendons were mechanically stretched axially during simultaneous collection of SWE at the injection site.</p><p><strong>Results: </strong>There were significant differences in shear wave speed (SWS) (saline > collagenase) at 3.5-h incubation (p < 0.001) and 7-h incubation (p < 0.001). Additionally, there was a significant difference in SWS between tendons cut at 25% and tendons cut at 50% and 75% (p = 0.040 and p = 0.001, respectively). Collagenase-treated tendons ruptured at a lower force than saline-treated tendons at both incubation times (both p < 0.001) when controlling for cut depth. Tendons treated with collagenase ruptured at a lower force than the saline control group at each cut thickness (all p < 0.001) controlling for incubation time.</p><p><strong>Conclusion: </strong>In a controlled ex vivo porcine model, SWE can be used to detect structural damage associated with tendinopathy.</p><p><strong>Relevance statement: </strong>Shear wave elastography can be used to show differences in abnormal tendons that may be translatable to clinical use as an adjunctive measure of tendon elasticity and injury.</p><p><strong>Key points: </strong>Tendon abnormality was quantitatively characterized using shear wave elastography in an ex vivo porcine experimental model. Shear wave speed was an accurate imaging biomarker for tendon health. Shear wave elastography was effective at detecting the extent of tendon damage. Tendons with decreased shear wave speed measurements rupture at smaller applied mechanical force.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"33"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00542-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early detection and treatment of tendinopathy may prevent progression to partial tears or complete rupture. Shear wave elastography (SWE) may help address the need for better tendon pathology characterization. This study aimed to quantify the effect of structural damage in an ex vivo animal tendinopathy model using SWE.

Methods: Forty-two porcine flexor tendons were injected with a 0.05-mL bolus of 1.5% collagenase solution to induce focal structural damage without surface tears. Control tendons were injected with saline (n = 42). Twenty-one tendons from each group were incubated at 37 °C for 3.5 h, while the remaining 21 from each group were incubated for 7 h. Each group was then divided into three groups of seven, and tendon incisions were made at 25%, 50%, and 75% of the tendon thickness. Tendons were mechanically stretched axially during simultaneous collection of SWE at the injection site.

Results: There were significant differences in shear wave speed (SWS) (saline > collagenase) at 3.5-h incubation (p < 0.001) and 7-h incubation (p < 0.001). Additionally, there was a significant difference in SWS between tendons cut at 25% and tendons cut at 50% and 75% (p = 0.040 and p = 0.001, respectively). Collagenase-treated tendons ruptured at a lower force than saline-treated tendons at both incubation times (both p < 0.001) when controlling for cut depth. Tendons treated with collagenase ruptured at a lower force than the saline control group at each cut thickness (all p < 0.001) controlling for incubation time.

Conclusion: In a controlled ex vivo porcine model, SWE can be used to detect structural damage associated with tendinopathy.

Relevance statement: Shear wave elastography can be used to show differences in abnormal tendons that may be translatable to clinical use as an adjunctive measure of tendon elasticity and injury.

Key points: Tendon abnormality was quantitatively characterized using shear wave elastography in an ex vivo porcine experimental model. Shear wave speed was an accurate imaging biomarker for tendon health. Shear wave elastography was effective at detecting the extent of tendon damage. Tendons with decreased shear wave speed measurements rupture at smaller applied mechanical force.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
Ultrasound quantitative characterization of tendinopathy with shear wave elastography in an ex vivo porcine tendon model. Connectivity related to major brain functions in Alzheimer disease progression: microstructural properties of the cingulum bundle and its subdivision using diffusion-weighted MRI. Beam hardening of K-edge contrast agents: a phantom study comparing clinical energy-integrating detector and photon-counting detector CT systems. Microvascular heterogeneity exploration in core and invasive zones of orthotopic rat glioblastoma via ultrasound localization microscopy. Deep learning-based Intraoperative MRI reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1