Intraspecific variation in metabolic responses to diverse environmental conditions in the Malagasy bat Triaenops menamena.

Sina Remmers, K Dausmann, M Schoroth, H Rabarison, S Reher
{"title":"Intraspecific variation in metabolic responses to diverse environmental conditions in the Malagasy bat Triaenops menamena.","authors":"Sina Remmers, K Dausmann, M Schoroth, H Rabarison, S Reher","doi":"10.1007/s00360-025-01608-1","DOIUrl":null,"url":null,"abstract":"<p><p>Widespread species often display traits of generalists, yet local adaptations may limit their ability to cope with diverse environmental conditions. With climate change being a pressing issue, distinguishing between the general ecological and physiological capacities of a species and those of individual populations is vital for assessing the capability to adapt rapidly to changing habitats. Despite its importance, physiological variation across broad range distributions, particularly among free-ranging bats in natural environments, has rarely been assessed. Studies focusing on physiological variation among different populations across seasons are even more limited. We investigated physiological variation in the Malagasy Trident Bat Triaenops menamena across three different roost types in Madagascar during the wet and dry season, examining aspects such as energy regimes, body temperature, and roost microclimates. We focused on patterns of torpor in relation to roosting conditions. We hypothesized that torpor occurrence would be higher during the colder, more demanding dry season. We predicted that populations roosting in more variable microclimates would expend less energy than those in mores stable ones due to more frequent use of torpor and greater metabolic rate reductions. Our findings highlight complex thermoregulatory strategies, with varying torpor expression across seasons and roosts. We observed an overall higher energy expenditure during the wet season but also greater energy savings during torpor in that season, regardless of roost type. We found that reductions in metabolic rate were positively correlated with greater fluctuations in ambient conditions, demonstrating these bats' adaptability to dynamic environments. Notably, we observed diverse torpor patterns, indicating the species' ability to use prolonged torpor under extreme conditions. This individual-level variation is crucial for adaptation to changing environmental conditions. Moreover, the flexibility in body temperature during torpor suggests caution in relying solely on it as an indicator for torpor use. Our study emphasizes the necessity to investigate thermoregulatory responses across different populations in their respective habitats to fully understand a species' adaptive potential.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01608-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Widespread species often display traits of generalists, yet local adaptations may limit their ability to cope with diverse environmental conditions. With climate change being a pressing issue, distinguishing between the general ecological and physiological capacities of a species and those of individual populations is vital for assessing the capability to adapt rapidly to changing habitats. Despite its importance, physiological variation across broad range distributions, particularly among free-ranging bats in natural environments, has rarely been assessed. Studies focusing on physiological variation among different populations across seasons are even more limited. We investigated physiological variation in the Malagasy Trident Bat Triaenops menamena across three different roost types in Madagascar during the wet and dry season, examining aspects such as energy regimes, body temperature, and roost microclimates. We focused on patterns of torpor in relation to roosting conditions. We hypothesized that torpor occurrence would be higher during the colder, more demanding dry season. We predicted that populations roosting in more variable microclimates would expend less energy than those in mores stable ones due to more frequent use of torpor and greater metabolic rate reductions. Our findings highlight complex thermoregulatory strategies, with varying torpor expression across seasons and roosts. We observed an overall higher energy expenditure during the wet season but also greater energy savings during torpor in that season, regardless of roost type. We found that reductions in metabolic rate were positively correlated with greater fluctuations in ambient conditions, demonstrating these bats' adaptability to dynamic environments. Notably, we observed diverse torpor patterns, indicating the species' ability to use prolonged torpor under extreme conditions. This individual-level variation is crucial for adaptation to changing environmental conditions. Moreover, the flexibility in body temperature during torpor suggests caution in relying solely on it as an indicator for torpor use. Our study emphasizes the necessity to investigate thermoregulatory responses across different populations in their respective habitats to fully understand a species' adaptive potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
期刊最新文献
Intraspecific variation in metabolic responses to diverse environmental conditions in the Malagasy bat Triaenops menamena. The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats. Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus. Thermal sensitivity of respiration and ROS emission of muscle mitochondria in deer mice. Effect of housing density on cellular and humoral immunity, hematology in striped hamsters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1