Quantifying associations between socio-spatial factors and cognitive development in the ABCD cohort.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-03-20 DOI:10.1038/s43588-025-00774-0
Nicole Osayande, Justin Marotta, Shambhavi Aggarwal, Jakub Kopal, Avram Holmes, Sarah W Yip, Danilo Bzdok
{"title":"Quantifying associations between socio-spatial factors and cognitive development in the ABCD cohort.","authors":"Nicole Osayande, Justin Marotta, Shambhavi Aggarwal, Jakub Kopal, Avram Holmes, Sarah W Yip, Danilo Bzdok","doi":"10.1038/s43588-025-00774-0","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the mounting demand for generative population models, their limited generalizability to underrepresented demographic groups hinders widespread adoption in real-world applications. Here we propose a diversity-aware population modeling framework that can guide targeted strategies in public health and education, by estimating subgroup-level effects and stratifying predictions to capture sociodemographic variability. We leverage Bayesian multilevel regression and post-stratification to systematically quantify inter-individual differences in the relationship between socioeconomic status and cognitive development. Post-stratification enhanced the interpretability of model predictions across underrepresented groups by incorporating US Census data to gain additional insights into smaller subgroups in the Adolescent Brain Cognitive Development Study. This ensured that predictions were not skewed by overly heterogeneous or homogeneous representations. Our analyses underscore the importance of combining Bayesian multilevel modeling with post-stratification to validate reliability and provide a more holistic explanation of sociodemographic disparities in our diversity-aware population modeling framework.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00774-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the mounting demand for generative population models, their limited generalizability to underrepresented demographic groups hinders widespread adoption in real-world applications. Here we propose a diversity-aware population modeling framework that can guide targeted strategies in public health and education, by estimating subgroup-level effects and stratifying predictions to capture sociodemographic variability. We leverage Bayesian multilevel regression and post-stratification to systematically quantify inter-individual differences in the relationship between socioeconomic status and cognitive development. Post-stratification enhanced the interpretability of model predictions across underrepresented groups by incorporating US Census data to gain additional insights into smaller subgroups in the Adolescent Brain Cognitive Development Study. This ensured that predictions were not skewed by overly heterogeneous or homogeneous representations. Our analyses underscore the importance of combining Bayesian multilevel modeling with post-stratification to validate reliability and provide a more holistic explanation of sociodemographic disparities in our diversity-aware population modeling framework.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Quantifying associations between socio-spatial factors and cognitive development in the ABCD cohort. Diversity-aware population modeling. A dynamic block activation framework for continuum models. Boosting crystal structure prediction via symmetry. Rapid traversal of vast chemical space using machine learning-guided docking screens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1