Class Bias Correction Matters: A Class-Incremental Learning Framework for Remote Sensing Scene Classification

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2025-03-20 DOI:10.1109/TGRS.2025.3553141
Yunze Wei;Zongxu Pan;Yirong Wu
{"title":"Class Bias Correction Matters: A Class-Incremental Learning Framework for Remote Sensing Scene Classification","authors":"Yunze Wei;Zongxu Pan;Yirong Wu","doi":"10.1109/TGRS.2025.3553141","DOIUrl":null,"url":null,"abstract":"Most existing deep learning models for remote sensing scene classification (RSSC) adopt offline learning paradigm, which are trained on closed datasets and fail to dynamically update with new class data. Currently, class-incremental learning (CIL) allows models to learn new classes while retaining discrimination of old ones. However, most CIL approaches aim to overcome catastrophic forgetting by employing techniques such as exemplarmemory and knowledge distillation, while ignoring the prediction bias caused by imbalanced datasets, where old classes retain fewer samples than new ones. Moreover, they do not adequately account for the multilevel semantic structure and multiscale feature information inherent in remote sensing images (RSIs). To address these issues, we propose an effective CIL framework for RSSC, named class bias correction network (CBCNet). Specifically, a cross-dimensional and interaction-aware attention mechanism (CIAM) is designed to incorporate channel, position, and direction-aware information in feature maps, enabling the model to highlight informative regions within RSIs. Next, a contextual information fusion module (CIFM) is proposed to explore the correlations among multilevel features and enhance representation quality through their fusion. In addition, the designed taskwise classifier head decoupling mechanism (TCDM) imposes a constraint to mitigate the prediction bias toward new classes, and enhances model’s discrimination among all seen classes. Finally, a multilevel integrated knowledge distillation module (MKDM) is developed to ensure comprehensive knowledge transfer, empowering the model to maintain critical representations in feature space and make well-informed decisions in output probability space. Experiments on five open datasets demonstrate the outperformance and robustness of our method.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-18"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10935643/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing deep learning models for remote sensing scene classification (RSSC) adopt offline learning paradigm, which are trained on closed datasets and fail to dynamically update with new class data. Currently, class-incremental learning (CIL) allows models to learn new classes while retaining discrimination of old ones. However, most CIL approaches aim to overcome catastrophic forgetting by employing techniques such as exemplarmemory and knowledge distillation, while ignoring the prediction bias caused by imbalanced datasets, where old classes retain fewer samples than new ones. Moreover, they do not adequately account for the multilevel semantic structure and multiscale feature information inherent in remote sensing images (RSIs). To address these issues, we propose an effective CIL framework for RSSC, named class bias correction network (CBCNet). Specifically, a cross-dimensional and interaction-aware attention mechanism (CIAM) is designed to incorporate channel, position, and direction-aware information in feature maps, enabling the model to highlight informative regions within RSIs. Next, a contextual information fusion module (CIFM) is proposed to explore the correlations among multilevel features and enhance representation quality through their fusion. In addition, the designed taskwise classifier head decoupling mechanism (TCDM) imposes a constraint to mitigate the prediction bias toward new classes, and enhances model’s discrimination among all seen classes. Finally, a multilevel integrated knowledge distillation module (MKDM) is developed to ensure comprehensive knowledge transfer, empowering the model to maintain critical representations in feature space and make well-informed decisions in output probability space. Experiments on five open datasets demonstrate the outperformance and robustness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类偏差校正很重要:遥感场景分类的类别增强学习框架
现有的遥感场景分类深度学习模型大多采用离线学习模式,在封闭的数据集上进行训练,不能随新的类数据动态更新。目前,类增量学习(class-incremental learning, CIL)允许模型在学习新类的同时保留对旧类的辨别能力。然而,大多数CIL方法旨在通过使用范例记忆和知识蒸馏等技术来克服灾难性遗忘,同时忽略了由不平衡数据集引起的预测偏差,其中旧类保留的样本少于新类。此外,它们没有充分考虑遥感图像固有的多层次语义结构和多尺度特征信息。为了解决这些问题,我们为RSSC提出了一个有效的CIL框架,称为类偏差校正网络(CBCNet)。具体来说,设计了一个跨维度和交互感知的注意机制(CIAM),将通道、位置和方向感知信息整合到特征图中,使模型能够突出显示rsi中的信息区域。其次,提出了上下文信息融合模块(CIFM)来探索多层次特征之间的相关性,并通过融合来提高表征质量。此外,所设计的任务分类器头部解耦机制(TCDM)施加了约束,以减轻对新类别的预测偏差,并增强了模型对所有已见类别的区分能力。最后,开发了一个多级集成知识蒸馏模块(MKDM),以确保知识的全面转移,使模型能够在特征空间中保持关键表示,并在输出概率空间中做出明智的决策。在五个开放数据集上的实验证明了我们的方法的优异性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
The InSAR absolute phase amid singularities Integrating Neighboring Structure Knowledge into A CNN-Transformer Hybrid Model for Global Open-access DEM Correction Using ICESat-2 Altimetry Introducing WSOD-SAM Proposals and Heuristic Pseudo-Fully Supervised Training Strategy for Weakly Supervised Object Detection in Remote Sensing Images Efficient One-Way Wave-Equation Depth Migration Using Fast Fourier Transform and Complex Padé Approximation via Helmholtz Operator TSTrans: Temporal-Sequence-Driven Transformer for Single Object Tracking in Satellite Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1