A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I†

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-03-21 DOI:10.1039/D4SC04036H
Franziska Hoeser, Patricia Saura, Caroline Harter, Ville R. I. Kaila and Thorsten Friedrich
{"title":"A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I†","authors":"Franziska Hoeser, Patricia Saura, Caroline Harter, Ville R. I. Kaila and Thorsten Friedrich","doi":"10.1039/D4SC04036H","DOIUrl":null,"url":null,"abstract":"<p >Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the <em>Escherichia coli</em> complex I as a model to biochemically characterize the F124L<small><sup>MT-ND5</sup></small> mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 17","pages":" 7374-7386"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc04036h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc04036h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the Escherichia coli complex I as a model to biochemically characterize the F124LMT-ND5 mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leigh综合征突变干扰呼吸复合体I的远程能量耦合
呼吸复合体I是细胞能量代谢的中心酶,它通过生物膜将电子转移与质子易位结合在一起。在此过程中,它为氧化磷酸化提供动力,从而驱动能量消耗过程。复合物I的突变导致人类严重的神经退行性疾病。然而,这些突变的生化后果在很大程度上仍然未知。在这里,我们使用大肠杆菌复合体I作为模型,对Leigh综合征患者中发现的F124L(MT-ND5)突变进行生化表征。我们发现,突变极大地扰乱质子易位和电子转移活动在相同程度上,尽管显着的140 Å突变位置和电子转移域之间的距离。我们的分子动力学模拟表明,致病突变诱导构象变化,阻碍了质子易位所必需的离子对网络中电磁波的传播。我们的研究结果表明,质子易位域的故障完全传递到电子转移域,强调了呼吸复合物I的质子耦合电子转移中的远距离作用耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Correction: Structure-based design of an aromatic helical foldamer–protein interface Protein-encapsulated fluorogenic probes for the selective detection of endogenous O-GlcNAcase (OGA) Glutathione-activatable synthetic channel for hopping-mediated anion transport Correction: Deciphering the molecular origin of the 19.3 eV electronic excitation energy of H3+ Stimulating the Lewis acidity of Pt–O–Co bridges via vacancy engineering for efficient hydrogen evolution in seawater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1