A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I†

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-03-21 DOI:10.1039/D4SC04036H
Franziska Hoeser, Patricia Saura, Caroline Harter, Ville R. I. Kaila and Thorsten Friedrich
{"title":"A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I†","authors":"Franziska Hoeser, Patricia Saura, Caroline Harter, Ville R. I. Kaila and Thorsten Friedrich","doi":"10.1039/D4SC04036H","DOIUrl":null,"url":null,"abstract":"<p >Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the <em>Escherichia coli</em> complex I as a model to biochemically characterize the F124L<small><sup>MT-ND5</sup></small> mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 17","pages":" 7374-7386"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d4sc04036h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc04036h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the Escherichia coli complex I as a model to biochemically characterize the F124LMT-ND5 mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leigh综合征突变干扰呼吸复合体I的远程能量耦合
呼吸复合体I是细胞能量代谢的中心酶,它通过生物膜将电子转移与质子易位结合在一起。在此过程中,它为氧化磷酸化提供动力,从而驱动能量消耗过程。复合物I的突变导致人类严重的神经退行性疾病。然而,这些突变的生化后果在很大程度上仍然未知。在这里,我们使用大肠杆菌复合体I作为模型,对Leigh综合征患者中发现的F124L(MT-ND5)突变进行生化表征。我们发现,突变极大地扰乱质子易位和电子转移活动在相同程度上,尽管显着的140 Å突变位置和电子转移域之间的距离。我们的分子动力学模拟表明,致病突变诱导构象变化,阻碍了质子易位所必需的离子对网络中电磁波的传播。我们的研究结果表明,质子易位域的故障完全传递到电子转移域,强调了呼吸复合物I的质子耦合电子转移中的远距离作用耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Stimulating the Lewis acidity of Pt–O–Co bridges via vacancy engineering for efficient hydrogen evolution in seawater Polarizability-Enhanced Ionic Transport in Rare-Earth-Free Halide–Sulfide Electrolytes: Li2ZrSCl4-xBrx Vibrational Snapshots of Ultrafast C-H Bond Photoactivation inside a Water-soluble Nanocage Active control of forward/backward charge transfer in Z-scheme water splitting: manipulating electrostatic affinity/repulsion between photocatalyst surface and electron mediator Achieving Switchable UV/Vis Circularly Polarized Luminescence by Varying Excitation Wavelength in Chiral Indium Halides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1