CDF-UIE: Leveraging Cross-Domain Fusion for Underwater Image Enhancement

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2025-03-21 DOI:10.1109/TGRS.2025.3553557
Haopeng Zhang;Hongli Xu;Xiaosheng Yu;Xiangyue Zhang;Xiujing Gao;Chengdong Wu
{"title":"CDF-UIE: Leveraging Cross-Domain Fusion for Underwater Image Enhancement","authors":"Haopeng Zhang;Hongli Xu;Xiaosheng Yu;Xiangyue Zhang;Xiujing Gao;Chengdong Wu","doi":"10.1109/TGRS.2025.3553557","DOIUrl":null,"url":null,"abstract":"Underwater image enhancement (UIE) aims to restore image quality by mitigating inherent degradations in underwater imaging systems. While existing learning-based methods show promise, they face limitations in separating and processing frequency components, effectively fusing domain information, and balancing the enhancement of structures and details. To resolve these limitations, we propose cross-domain fusion (CDF)-UIE, a novel network that leverages and fuses cross-domain information for mitigating the degradation in underwater images. CDF-UIE first performs domain decoupling of input features using the proposed spatial-frequency decoupling (SFD) block. Then, we design an innovative CDF block, which effectively bridges the spatial- and frequency-domain features through the cross-domain attention mechanism. To produce stable and detailed enhanced outputs, we exploit the coarse and fine-scale information in the image reconstruction stage. In addition, we introduce a multiscale objective function that incorporates pixel-level, structural, and perceptual constraints to guide the enhancement process. We conduct extensive experiments on six diverse real-world underwater image datasets. Comprehensive experiments and real-world application tests demonstrate that CDF-UIE significantly outperforms existing methods, offering promising future applications in various underwater scenarios. The source code is available at <uri>https://github.com/hpzhan66/CDF-UIE</uri>.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-15"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937076/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater image enhancement (UIE) aims to restore image quality by mitigating inherent degradations in underwater imaging systems. While existing learning-based methods show promise, they face limitations in separating and processing frequency components, effectively fusing domain information, and balancing the enhancement of structures and details. To resolve these limitations, we propose cross-domain fusion (CDF)-UIE, a novel network that leverages and fuses cross-domain information for mitigating the degradation in underwater images. CDF-UIE first performs domain decoupling of input features using the proposed spatial-frequency decoupling (SFD) block. Then, we design an innovative CDF block, which effectively bridges the spatial- and frequency-domain features through the cross-domain attention mechanism. To produce stable and detailed enhanced outputs, we exploit the coarse and fine-scale information in the image reconstruction stage. In addition, we introduce a multiscale objective function that incorporates pixel-level, structural, and perceptual constraints to guide the enhancement process. We conduct extensive experiments on six diverse real-world underwater image datasets. Comprehensive experiments and real-world application tests demonstrate that CDF-UIE significantly outperforms existing methods, offering promising future applications in various underwater scenarios. The source code is available at https://github.com/hpzhan66/CDF-UIE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CDF-UIE:利用跨域融合进行水下图像增强
水下图像增强(UIE)旨在通过减轻水下成像系统的固有退化来恢复图像质量。虽然现有的基于学习的方法显示出前景,但它们在分离和处理频率分量、有效融合域信息以及平衡结构和细节增强方面存在局限性。为了解决这些限制,我们提出了跨域融合(CDF)-UIE,这是一种利用和融合跨域信息来减轻水下图像退化的新型网络。CDF-UIE首先使用提出的空间-频率解耦(SFD)块对输入特征进行域解耦。然后,我们设计了一个创新的CDF块,通过跨域注意机制有效地桥接了空间和频域特征。为了得到稳定细致的增强输出,我们在图像重建阶段利用了粗尺度和细尺度信息。此外,我们引入了一个包含像素级、结构和感知约束的多尺度目标函数来指导增强过程。我们在六个不同的真实世界水下图像数据集上进行了广泛的实验。综合实验和实际应用测试表明,CDF-UIE显著优于现有方法,在各种水下场景中具有广阔的应用前景。源代码可从https://github.com/hpzhan66/CDF-UIE获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
The InSAR absolute phase amid singularities Integrating Neighboring Structure Knowledge into A CNN-Transformer Hybrid Model for Global Open-access DEM Correction Using ICESat-2 Altimetry Introducing WSOD-SAM Proposals and Heuristic Pseudo-Fully Supervised Training Strategy for Weakly Supervised Object Detection in Remote Sensing Images Efficient One-Way Wave-Equation Depth Migration Using Fast Fourier Transform and Complex Padé Approximation via Helmholtz Operator TSTrans: Temporal-Sequence-Driven Transformer for Single Object Tracking in Satellite Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1