{"title":"Limitations of the decoding-to-LPN reduction via code smoothing","authors":"Madhura Pathegama, Alexander Barg","doi":"10.1007/s10623-025-01617-9","DOIUrl":null,"url":null,"abstract":"<p>The learning parity with noise (LPN) problem underlines several classic cryptographic primitives. Researchers have attempted to show the algorithmic difficulty of this problem by finding a reduction from the decoding problem of linear codes, for which several hardness results exist. Earlier studies used code smoothing as a technical tool to achieve such reductions for codes with vanishing rate. This has left open the question of attaining a reduction with positive-rate codes. Addressing this case, we characterize the efficiency of the reduction in terms of the parameters of the decoding and LPN problems. As a conclusion, we isolate the parameter regimes for which a meaningful reduction is possible and the regimes for which its existence is unlikely.\n</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01617-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The learning parity with noise (LPN) problem underlines several classic cryptographic primitives. Researchers have attempted to show the algorithmic difficulty of this problem by finding a reduction from the decoding problem of linear codes, for which several hardness results exist. Earlier studies used code smoothing as a technical tool to achieve such reductions for codes with vanishing rate. This has left open the question of attaining a reduction with positive-rate codes. Addressing this case, we characterize the efficiency of the reduction in terms of the parameters of the decoding and LPN problems. As a conclusion, we isolate the parameter regimes for which a meaningful reduction is possible and the regimes for which its existence is unlikely.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.