Andrew G. Nicoll, Juraj Szavits-Nossan, Martin R. Evans, Ramon Grima
{"title":"Transient power-law behaviour following induction distinguishes between competing models of stochastic gene expression","authors":"Andrew G. Nicoll, Juraj Szavits-Nossan, Martin R. Evans, Ramon Grima","doi":"10.1038/s41467-025-58127-4","DOIUrl":null,"url":null,"abstract":"<p>What features of transcription can be learnt by fitting mathematical models of gene expression to mRNA count data? Given a suite of models, fitting to data selects an optimal one, thus identifying a probable transcriptional mechanism. Whilst attractive, the utility of this methodology remains unclear. Here, we sample steady-state, single-cell mRNA count distributions from parameters in the physiological range, and show they cannot be used to confidently estimate the number of inactive gene states, i.e. the number of rate-limiting steps in transcriptional initiation. Distributions from over 99% of the parameter space generated using models with 2, 3, or 4 inactive states can be well fit by one with a single inactive state. However, we show that for many minutes following induction, eukaryotic cells show an increase in the mean mRNA count that obeys a power law whose exponent equals the sum of the number of states visited from the initial inactive to the active state and the number of rate-limiting post-transcriptional processing steps. Our study shows that estimation of the exponent from eukaryotic data can be sufficient to determine a lower bound on the total number of regulatory steps in transcription initiation, splicing, and nuclear export.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58127-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
What features of transcription can be learnt by fitting mathematical models of gene expression to mRNA count data? Given a suite of models, fitting to data selects an optimal one, thus identifying a probable transcriptional mechanism. Whilst attractive, the utility of this methodology remains unclear. Here, we sample steady-state, single-cell mRNA count distributions from parameters in the physiological range, and show they cannot be used to confidently estimate the number of inactive gene states, i.e. the number of rate-limiting steps in transcriptional initiation. Distributions from over 99% of the parameter space generated using models with 2, 3, or 4 inactive states can be well fit by one with a single inactive state. However, we show that for many minutes following induction, eukaryotic cells show an increase in the mean mRNA count that obeys a power law whose exponent equals the sum of the number of states visited from the initial inactive to the active state and the number of rate-limiting post-transcriptional processing steps. Our study shows that estimation of the exponent from eukaryotic data can be sufficient to determine a lower bound on the total number of regulatory steps in transcription initiation, splicing, and nuclear export.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.