Co-evolutionary algorithm with a region-based diversity enhancement strategy

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-03-22 DOI:10.1007/s40747-025-01819-7
Kangshun Li, RuoLin Ruan, Shumin Xie, Hui Wang
{"title":"Co-evolutionary algorithm with a region-based diversity enhancement strategy","authors":"Kangshun Li, RuoLin Ruan, Shumin Xie, Hui Wang","doi":"10.1007/s40747-025-01819-7","DOIUrl":null,"url":null,"abstract":"<p>When addressing constrained multi-objective optimization problems, the presence of complex constraints often results in a non-connected feasible region, segmenting the Pareto front into multiple discrete segments. This fragmentation can significantly limit population diversity. To tackle this issue, we have designed two mechanisms aimed at preserving population diversity and have developed a constrained multi-objective co-evolutionary algorithm (DESCA) based on the framework of a two-population co-evolutionary algorithm. The proposed algorithm consists of two populations: a main population dedicated to exploring the constrained Pareto front and an auxiliary population tasked with exploring the unconstrained Pareto front. To sustain the diversity within both populations, the algorithm dynamically adjusts the genetic operator based on the observed states of the populations. Moreover, when the main population encounters stagnation, a regional mating mechanism is employed between the main population and the auxiliary population, accompanied by a relaxation of the constraints on the main population. Conversely, when the auxiliary population experiences stagnation, a diversity-first individual selection strategy is implemented; this strategy utilizes a regional distribution index to assess individual diversity and mitigates population stagnation by enhancing diversity. The performance of DESCA has been evaluated across 33 benchmark problems and 6 real-world problems. Experimental results demonstrate that DESCA exhibits strong competitiveness compared to seven other typical state-of-the-art algorithms.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"94 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01819-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

When addressing constrained multi-objective optimization problems, the presence of complex constraints often results in a non-connected feasible region, segmenting the Pareto front into multiple discrete segments. This fragmentation can significantly limit population diversity. To tackle this issue, we have designed two mechanisms aimed at preserving population diversity and have developed a constrained multi-objective co-evolutionary algorithm (DESCA) based on the framework of a two-population co-evolutionary algorithm. The proposed algorithm consists of two populations: a main population dedicated to exploring the constrained Pareto front and an auxiliary population tasked with exploring the unconstrained Pareto front. To sustain the diversity within both populations, the algorithm dynamically adjusts the genetic operator based on the observed states of the populations. Moreover, when the main population encounters stagnation, a regional mating mechanism is employed between the main population and the auxiliary population, accompanied by a relaxation of the constraints on the main population. Conversely, when the auxiliary population experiences stagnation, a diversity-first individual selection strategy is implemented; this strategy utilizes a regional distribution index to assess individual diversity and mitigates population stagnation by enhancing diversity. The performance of DESCA has been evaluated across 33 benchmark problems and 6 real-world problems. Experimental results demonstrate that DESCA exhibits strong competitiveness compared to seven other typical state-of-the-art algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Co-evolutionary algorithm with a region-based diversity enhancement strategy The opinion dynamics model for group decision making with probabilistic uncertain linguistic information A reliability centred maintenance-oriented framework for modelling, evaluating, and optimising complex repairable flow networks Enhancing implicit sentiment analysis via knowledge enhancement and context information SLPOD: superclass learning on point cloud object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1