{"title":"A reliability centred maintenance-oriented framework for modelling, evaluating, and optimising complex repairable flow networks","authors":"Nicholas Kaliszewski, Romeo Marian, Javaan Chahl","doi":"10.1007/s40747-025-01787-y","DOIUrl":null,"url":null,"abstract":"<p>Few would argue that maximising the performance of the many flow networks (FNs) that operate for the benefit of our society and the economy is anything but essential. Through seeking to mitigate the risks posed by different asset failure modes, maintenance is critical to minimising disruptions and maximising resilience. Repairable flow network (RFN) optimisation and reliability centred maintenance (RCM) are both used to support asset related decisions in FNs but independently; meaning, attempts to maximise FN performance using RCM are likely to result in suboptimal outcomes. There is limited work bringing RFN optimisation and RCM together to support evaluating maintenance decisions in the context of holistic network level performance (measured in terms of profitability) and in a way that considers the complex structural and topological relationships that exist between process components, equipment components, and failure modes. Hence, this paper addresses this by developing the complex repairable flow network (CRFN) modelling framework with the goal of ensuring RFN optimisation integrates complex process and equipment (including failure modes) component topologies, such that it operates in alignment with the needs of RCM as part of maximising network flow in terms of gross profitability. This was done through the creation of a novel and transdisciplinary multi-layered network-based approach that integrates information from what were termed the facility, process, maintainable item, and failure mode levels. Furthermore, through running simulation experiments on an example CRFN, it is demonstrated that the CRFN modelling framework can be used to evaluate the impact different maintenance strategies have on maximising network flow in terms of gross profitability.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"9 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01787-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Few would argue that maximising the performance of the many flow networks (FNs) that operate for the benefit of our society and the economy is anything but essential. Through seeking to mitigate the risks posed by different asset failure modes, maintenance is critical to minimising disruptions and maximising resilience. Repairable flow network (RFN) optimisation and reliability centred maintenance (RCM) are both used to support asset related decisions in FNs but independently; meaning, attempts to maximise FN performance using RCM are likely to result in suboptimal outcomes. There is limited work bringing RFN optimisation and RCM together to support evaluating maintenance decisions in the context of holistic network level performance (measured in terms of profitability) and in a way that considers the complex structural and topological relationships that exist between process components, equipment components, and failure modes. Hence, this paper addresses this by developing the complex repairable flow network (CRFN) modelling framework with the goal of ensuring RFN optimisation integrates complex process and equipment (including failure modes) component topologies, such that it operates in alignment with the needs of RCM as part of maximising network flow in terms of gross profitability. This was done through the creation of a novel and transdisciplinary multi-layered network-based approach that integrates information from what were termed the facility, process, maintainable item, and failure mode levels. Furthermore, through running simulation experiments on an example CRFN, it is demonstrated that the CRFN modelling framework can be used to evaluate the impact different maintenance strategies have on maximising network flow in terms of gross profitability.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.