Atomically dispersed cerium on copper tailors interfacial water structure for efficient CO-to-acetate electroreduction

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-21 DOI:10.1038/s41467-025-58109-6
Xue-Peng Yang, Zhi-Zheng Wu, Ye-Cheng Li, Shu-Ping Sun, Yu-Cai Zhang, Jing-Wen Duanmu, Pu-Gan Lu, Xiao-Long Zhang, Fei-Yue Gao, Yu Yang, Ye-Hua Wang, Peng-Cheng Yu, Shi-Kuo Li, Min-Rui Gao
{"title":"Atomically dispersed cerium on copper tailors interfacial water structure for efficient CO-to-acetate electroreduction","authors":"Xue-Peng Yang, Zhi-Zheng Wu, Ye-Cheng Li, Shu-Ping Sun, Yu-Cai Zhang, Jing-Wen Duanmu, Pu-Gan Lu, Xiao-Long Zhang, Fei-Yue Gao, Yu Yang, Ye-Hua Wang, Peng-Cheng Yu, Shi-Kuo Li, Min-Rui Gao","doi":"10.1038/s41467-025-58109-6","DOIUrl":null,"url":null,"abstract":"<p>Electrosynthesis of acetate from carbon monoxide (CO) powered by renewable electricity offers one promising avenue to obtain valuable carbon-based products but undergoes unsatisfied selectivity because of the competing hydrogen evolution reaction. We report here a cerium single atoms (Ce-SAs) modified crystalline-amorphous dual-phase copper (Cu) catalyst, in which Ce SAs reduce the electron density of the dual-phase Cu, lowering the proportion of interfacial K<sup>+</sup> ion hydrated water (K·H<sub>2</sub>O) and thereby decreasing the H<sup>*</sup> coverage on the catalyst surface. Meanwhile, the electron transfer from dual-phase Cu to Ce SAs yields Cu<sup>+</sup> species, which boost the formation of active atop-adsorbed <sup>*</sup>CO (CO<sub>atop</sub>), improving CO<sub>atop</sub>-CO<sub>atop</sub> coupling kinetics. These together lead to the preferential pathway of ketene intermediate (<sup>*</sup>CH<sub>2</sub>-C=O) formation, which then reacts with OH<sup>-</sup> enriched by pulsed electrolysis to generate acetate. Using this catalyst, we achieve a high Faradaic efficiency of 71.3 ± 2.1% toward acetate and a time-averaged acetate current density of 110.6 ± 2.0 mA cm<sup>−2</sup> under a pulsed electrolysis mode. Furthermore, a flow-cell reactor assembled by this catalyst can produce acetate steadily for at least 138 hours with selectivity greater than 60%.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58109-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrosynthesis of acetate from carbon monoxide (CO) powered by renewable electricity offers one promising avenue to obtain valuable carbon-based products but undergoes unsatisfied selectivity because of the competing hydrogen evolution reaction. We report here a cerium single atoms (Ce-SAs) modified crystalline-amorphous dual-phase copper (Cu) catalyst, in which Ce SAs reduce the electron density of the dual-phase Cu, lowering the proportion of interfacial K+ ion hydrated water (K·H2O) and thereby decreasing the H* coverage on the catalyst surface. Meanwhile, the electron transfer from dual-phase Cu to Ce SAs yields Cu+ species, which boost the formation of active atop-adsorbed *CO (COatop), improving COatop-COatop coupling kinetics. These together lead to the preferential pathway of ketene intermediate (*CH2-C=O) formation, which then reacts with OH- enriched by pulsed electrolysis to generate acetate. Using this catalyst, we achieve a high Faradaic efficiency of 71.3 ± 2.1% toward acetate and a time-averaged acetate current density of 110.6 ± 2.0 mA cm−2 under a pulsed electrolysis mode. Furthermore, a flow-cell reactor assembled by this catalyst can produce acetate steadily for at least 138 hours with selectivity greater than 60%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子分散的铈在铜上的界面水结构为co -to-乙酸的高效电还原
由可再生电力驱动的一氧化碳(CO)电合成醋酸盐是获得有价值的碳基产品的一种有前途的途径,但由于相互竞争的析氢反应,其选择性不理想。本文报道了一种铈单原子(Ce-SAs)修饰结晶-非晶双相铜(Cu)催化剂,其中Ce-SAs降低了双相铜的电子密度,降低了界面K+离子水合水(K·H2O)的比例,从而降低了催化剂表面的H*覆盖率。同时,双相Cu向Ce - SAs的电子转移产生Cu+,促进了活性顶部吸附*CO (cotop)的形成,改善了cotop - cotop耦合动力学。这些共同导致烯酮中间体(*CH2-C=O)形成的优先途径,然后与脉冲电解富集的OH反应生成乙酸。使用该催化剂,我们在脉冲电解模式下获得了71.3±2.1%的法拉第效率和110.6±2.0 mA cm - 2的时间平均电流密度。此外,由该催化剂组装的流电池反应器可以稳定地生产乙酸至少138小时,选择性大于60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Alleviating non-radiative losses in organic solar cells through side-chain regulation of low-bandgap non-fullerene acceptors. Regular-wrinkling tunable MXene lattice for electromagnetic interference shielding Integration of large vision language models for efficient post-disaster damage assessment and reporting Decoupling slab gliding and lattice contraction in Na layered oxides to enable high-voltage Na-ion batteries Structural basis for late maturation steps of mitochondrial respiratory chain complex IV within the human respirasome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1