Ion-Docking Effect Enabling Rechargeable High-Voltage Magnesium-Iodine/Chlorine Battery

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-03-22 DOI:10.1002/anie.202503209
Longyuan Guo, Tong Li, Ting Yang, Zhenglin Hu, Aoxuan Wang, Jiayan Luo
{"title":"Ion-Docking Effect Enabling Rechargeable High-Voltage Magnesium-Iodine/Chlorine Battery","authors":"Longyuan Guo, Tong Li, Ting Yang, Zhenglin Hu, Aoxuan Wang, Jiayan Luo","doi":"10.1002/anie.202503209","DOIUrl":null,"url":null,"abstract":"Rechargeable magnesium (Mg) batteries represent a promising energy storage system by offering low cost and dendrite-less propensity. However, the limited selection of cathode materials, and often with low voltage and capacity, constrain Mg batteries. Herein, by exploiting the ion-docking effect between two halogen species — iodine cations (I+) and chlorine anions (Cl-) — we activate the cathodic activity of halogens and develop a magnesium-iodine/chlorine (Mg-I/Cl) battery prototype with high energy and power density. The ion-docking effect enables I+ and Cl- to mutually balance and disperse their charges, weakens the coordination strength between Cl- and Mg2+ while enhances the stability of I+, thus facilitating the multi-electron (2+1/3) redox reactions of halogens. We also find the solvation state of iodine species determine the reaction process of the I0/I3-/I- redox couples. The here-developed magnesium-iodine/chlorine battery features an impressively high discharge plateau of up to 3.0 V with a high capacity exceeding 400 mAh g-1, and demonstrates a stable lifespan for 500 cycles, with the ability of ultra-fast charging at 20C and low-temperature cycling under -30 °C. These findings may provide new insights for developing high-energy-density Mg battery systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"16 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503209","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable magnesium (Mg) batteries represent a promising energy storage system by offering low cost and dendrite-less propensity. However, the limited selection of cathode materials, and often with low voltage and capacity, constrain Mg batteries. Herein, by exploiting the ion-docking effect between two halogen species — iodine cations (I+) and chlorine anions (Cl-) — we activate the cathodic activity of halogens and develop a magnesium-iodine/chlorine (Mg-I/Cl) battery prototype with high energy and power density. The ion-docking effect enables I+ and Cl- to mutually balance and disperse their charges, weakens the coordination strength between Cl- and Mg2+ while enhances the stability of I+, thus facilitating the multi-electron (2+1/3) redox reactions of halogens. We also find the solvation state of iodine species determine the reaction process of the I0/I3-/I- redox couples. The here-developed magnesium-iodine/chlorine battery features an impressively high discharge plateau of up to 3.0 V with a high capacity exceeding 400 mAh g-1, and demonstrates a stable lifespan for 500 cycles, with the ability of ultra-fast charging at 20C and low-temperature cycling under -30 °C. These findings may provide new insights for developing high-energy-density Mg battery systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Inside Back Cover: Reinventing the High‐rate Energy Storage of Hard Carbon: the Order‐degree Governs the Trade‐off of Desolvation–Solid Electrolyte Interphase at Interfaces Inside Back Cover: From Autonomous Chemical Micro‐/Nanomotors to Rationally Engineered Bio‐Interfaces Controlled Deformation Mode and Amplitude of Liquid Crystal Actuators through Orthogonal Light and Heat‐Induced Exchanges In situ light-driven pH modulation for NMR studies Coupling Zn2+ Ferrying Effect with Anion-π Interaction to Mitigate Space Charge Layer Enables Ultra-High Utilization Rate Zn Anode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1