Enhancing implicit sentiment analysis via knowledge enhancement and context information

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-03-22 DOI:10.1007/s40747-025-01840-w
Yanying Mao, Qun Liu, Yu Zhang
{"title":"Enhancing implicit sentiment analysis via knowledge enhancement and context information","authors":"Yanying Mao, Qun Liu, Yu Zhang","doi":"10.1007/s40747-025-01840-w","DOIUrl":null,"url":null,"abstract":"<p>Sentiment analysis (SA) is a vital research direction in natural language processing (NLP). Compared with the widely-concerned explicit sentiment analysis, implicit sentiment analysis (ISA) is more challenging and rarely studied due to the lack of sentiment words. However, existing implicit sentiment analysis methods are hard to identify implicit sentiment without the support of commonsense and contextual background. To address these limitations, we propose a knowledge-enhanced framework that integrates external knowledge graphs and contextual information for implicit sentiment analysis. We draw an analogy between the word in the target sentence and the knowledge graph entities and propose a retrieving and selecting method to automatically extract helpful knowledge graph entity embedding for implicit sentiment analysis. By introducing external knowledge from the knowledge graph, the proposed approach can extend semantic of implicit sentiment expressions. Then, a knowledge fusion module based on dynamic Coattention has been designed to integrate the extracted helpful knowledge with the context representation, effectively enriching the semantic representation of texts. The experiments on two implicit sentiment analysis datasets and two explicit sentiment analysis datasets prove that our model can achieve better performances in text sentiment analysis by fully utilizing external commonsense knowledge and context information.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"56 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01840-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis (SA) is a vital research direction in natural language processing (NLP). Compared with the widely-concerned explicit sentiment analysis, implicit sentiment analysis (ISA) is more challenging and rarely studied due to the lack of sentiment words. However, existing implicit sentiment analysis methods are hard to identify implicit sentiment without the support of commonsense and contextual background. To address these limitations, we propose a knowledge-enhanced framework that integrates external knowledge graphs and contextual information for implicit sentiment analysis. We draw an analogy between the word in the target sentence and the knowledge graph entities and propose a retrieving and selecting method to automatically extract helpful knowledge graph entity embedding for implicit sentiment analysis. By introducing external knowledge from the knowledge graph, the proposed approach can extend semantic of implicit sentiment expressions. Then, a knowledge fusion module based on dynamic Coattention has been designed to integrate the extracted helpful knowledge with the context representation, effectively enriching the semantic representation of texts. The experiments on two implicit sentiment analysis datasets and two explicit sentiment analysis datasets prove that our model can achieve better performances in text sentiment analysis by fully utilizing external commonsense knowledge and context information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Co-evolutionary algorithm with a region-based diversity enhancement strategy The opinion dynamics model for group decision making with probabilistic uncertain linguistic information A reliability centred maintenance-oriented framework for modelling, evaluating, and optimising complex repairable flow networks Enhancing implicit sentiment analysis via knowledge enhancement and context information SLPOD: superclass learning on point cloud object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1