Improving compatibility and tribological performance via supramolecular gelation of MoS2 nanoparticles in Perfluoropolyether lubricants

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Friction Pub Date : 2025-03-22 DOI:10.26599/frict.2025.9441094
Yanyan Bai, Xuzhi Hu, Ming Zhang, Qiangliang Yu, Yijing Liang, Yang Wu, Meirong Cai, Feng Zhou, Weimin Liu
{"title":"Improving compatibility and tribological performance via supramolecular gelation of MoS2 nanoparticles in Perfluoropolyether lubricants","authors":"Yanyan Bai, Xuzhi Hu, Ming Zhang, Qiangliang Yu, Yijing Liang, Yang Wu, Meirong Cai, Feng Zhou, Weimin Liu","doi":"10.26599/frict.2025.9441094","DOIUrl":null,"url":null,"abstract":"<p>Perfluoropolyether (PFPE) oils pose challenges in their compatibility with nanoparticle lubrication additives due to their unique molecular structure, limiting their lubrication performance enhancement. To address this issue, we propose the development of nanoparticle composite supramolecular gel lubricants, aiming to maintain the dispersion stability of molybdenum disulfide (MoS<sub>2</sub>) nanoparticles within PFPE lubricants. It was achieved by harnessing the self-assembled three-dimensional network structure of supramolecular gels to entrap MoS<sub>2</sub> nanoparticles. It was observed that MoS<sub>2</sub> nanoparticles tended to cluster and settle in PFPE oils. However, the MoS<sub>2</sub>-composite PFPE supramolecular gel lubricant (gel@MoS<sub>2</sub>) exhibited exceptional dispersion stability over an extended period. MoS<sub>2</sub> nanoparticles used as additives in PFPE-based supramolecular gel lubricants not only enhanced mechanical strength but also retained outstanding thixotropic properties. Additionally, nanoparticles improved extreme pressure performance, anti-friction capabilities and anti-wear properties of PFPE-based supramolecular gel lubricants under high loads of 300N. Furthermore, the lubrication mechanism of gel@MoS<sub>2</sub> composites was elucidated using focused ion beam-transmission electron microscopy and X-ray photoelectron spectroscopy. During the friction process, the 3D networks of supramolecular gels, held together by weak interaction forces like H-bonds, halogen bonding, and van der Waals forces, were disrupted under continuous shear forces. Consequently, some of the MoS<sub>2 </sub>nanoparticles and gelators migrated to the steel surface, forming a protective lubricating film. This research holds significant importance in prolonging the lifespan of equipment in critical sectors such as aerospace and aviation, where high-end lubrication is essential.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"56 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441094","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluoropolyether (PFPE) oils pose challenges in their compatibility with nanoparticle lubrication additives due to their unique molecular structure, limiting their lubrication performance enhancement. To address this issue, we propose the development of nanoparticle composite supramolecular gel lubricants, aiming to maintain the dispersion stability of molybdenum disulfide (MoS2) nanoparticles within PFPE lubricants. It was achieved by harnessing the self-assembled three-dimensional network structure of supramolecular gels to entrap MoS2 nanoparticles. It was observed that MoS2 nanoparticles tended to cluster and settle in PFPE oils. However, the MoS2-composite PFPE supramolecular gel lubricant (gel@MoS2) exhibited exceptional dispersion stability over an extended period. MoS2 nanoparticles used as additives in PFPE-based supramolecular gel lubricants not only enhanced mechanical strength but also retained outstanding thixotropic properties. Additionally, nanoparticles improved extreme pressure performance, anti-friction capabilities and anti-wear properties of PFPE-based supramolecular gel lubricants under high loads of 300N. Furthermore, the lubrication mechanism of gel@MoS2 composites was elucidated using focused ion beam-transmission electron microscopy and X-ray photoelectron spectroscopy. During the friction process, the 3D networks of supramolecular gels, held together by weak interaction forces like H-bonds, halogen bonding, and van der Waals forces, were disrupted under continuous shear forces. Consequently, some of the MoS2 nanoparticles and gelators migrated to the steel surface, forming a protective lubricating film. This research holds significant importance in prolonging the lifespan of equipment in critical sectors such as aerospace and aviation, where high-end lubrication is essential.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
期刊最新文献
Improving compatibility and tribological performance via supramolecular gelation of MoS2 nanoparticles in Perfluoropolyether lubricants Study on wear performance and mechanism of pantograph contact strip that contact with damaged contact wire under ambient humidity Synthesis of nature inspired, phosphorylcholine moieties and poly(ethylene oxide) brushes containing copolymers which synergise steric repulsion and hydration lubrication for articular cartilage Mixed and thermal elastohydrodynamic simulation of a low-loss gear considering the gear system Atomistic study of material removal behavior during ultrasonic vibration-assisted nanoscratching of single-crystal AlN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1