Yanyan Bai, Xuzhi Hu, Ming Zhang, Qiangliang Yu, Yijing Liang, Yang Wu, Meirong Cai, Feng Zhou, Weimin Liu
{"title":"Improving compatibility and tribological performance via supramolecular gelation of MoS2 nanoparticles in Perfluoropolyether lubricants","authors":"Yanyan Bai, Xuzhi Hu, Ming Zhang, Qiangliang Yu, Yijing Liang, Yang Wu, Meirong Cai, Feng Zhou, Weimin Liu","doi":"10.26599/frict.2025.9441094","DOIUrl":null,"url":null,"abstract":"<p>Perfluoropolyether (PFPE) oils pose challenges in their compatibility with nanoparticle lubrication additives due to their unique molecular structure, limiting their lubrication performance enhancement. To address this issue, we propose the development of nanoparticle composite supramolecular gel lubricants, aiming to maintain the dispersion stability of molybdenum disulfide (MoS<sub>2</sub>) nanoparticles within PFPE lubricants. It was achieved by harnessing the self-assembled three-dimensional network structure of supramolecular gels to entrap MoS<sub>2</sub> nanoparticles. It was observed that MoS<sub>2</sub> nanoparticles tended to cluster and settle in PFPE oils. However, the MoS<sub>2</sub>-composite PFPE supramolecular gel lubricant (gel@MoS<sub>2</sub>) exhibited exceptional dispersion stability over an extended period. MoS<sub>2</sub> nanoparticles used as additives in PFPE-based supramolecular gel lubricants not only enhanced mechanical strength but also retained outstanding thixotropic properties. Additionally, nanoparticles improved extreme pressure performance, anti-friction capabilities and anti-wear properties of PFPE-based supramolecular gel lubricants under high loads of 300N. Furthermore, the lubrication mechanism of gel@MoS<sub>2</sub> composites was elucidated using focused ion beam-transmission electron microscopy and X-ray photoelectron spectroscopy. During the friction process, the 3D networks of supramolecular gels, held together by weak interaction forces like H-bonds, halogen bonding, and van der Waals forces, were disrupted under continuous shear forces. Consequently, some of the MoS<sub>2 </sub>nanoparticles and gelators migrated to the steel surface, forming a protective lubricating film. This research holds significant importance in prolonging the lifespan of equipment in critical sectors such as aerospace and aviation, where high-end lubrication is essential.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"56 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441094","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluoropolyether (PFPE) oils pose challenges in their compatibility with nanoparticle lubrication additives due to their unique molecular structure, limiting their lubrication performance enhancement. To address this issue, we propose the development of nanoparticle composite supramolecular gel lubricants, aiming to maintain the dispersion stability of molybdenum disulfide (MoS2) nanoparticles within PFPE lubricants. It was achieved by harnessing the self-assembled three-dimensional network structure of supramolecular gels to entrap MoS2 nanoparticles. It was observed that MoS2 nanoparticles tended to cluster and settle in PFPE oils. However, the MoS2-composite PFPE supramolecular gel lubricant (gel@MoS2) exhibited exceptional dispersion stability over an extended period. MoS2 nanoparticles used as additives in PFPE-based supramolecular gel lubricants not only enhanced mechanical strength but also retained outstanding thixotropic properties. Additionally, nanoparticles improved extreme pressure performance, anti-friction capabilities and anti-wear properties of PFPE-based supramolecular gel lubricants under high loads of 300N. Furthermore, the lubrication mechanism of gel@MoS2 composites was elucidated using focused ion beam-transmission electron microscopy and X-ray photoelectron spectroscopy. During the friction process, the 3D networks of supramolecular gels, held together by weak interaction forces like H-bonds, halogen bonding, and van der Waals forces, were disrupted under continuous shear forces. Consequently, some of the MoS2 nanoparticles and gelators migrated to the steel surface, forming a protective lubricating film. This research holds significant importance in prolonging the lifespan of equipment in critical sectors such as aerospace and aviation, where high-end lubrication is essential.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.