Raphael Koster, Miruna Pîslar, Andrea Tacchetti, Jan Balaguer, Leqi Liu, Romuald Elie, Oliver P. Hauser, Karl Tuyls, Matt Botvinick, Christopher Summerfield
{"title":"Deep reinforcement learning can promote sustainable human behaviour in a common-pool resource problem","authors":"Raphael Koster, Miruna Pîslar, Andrea Tacchetti, Jan Balaguer, Leqi Liu, Romuald Elie, Oliver P. Hauser, Karl Tuyls, Matt Botvinick, Christopher Summerfield","doi":"10.1038/s41467-025-58043-7","DOIUrl":null,"url":null,"abstract":"<p>A canonical social dilemma arises when resources are allocated to people, who can either reciprocate with interest or keep the proceeds. The right resource allocation mechanisms can encourage levels of reciprocation that sustain the commons. Here, in an iterated multiplayer trust game, we use deep reinforcement learning (RL) to design a social planner that promotes sustainable contributions from human participants. We first trained neural networks to behave like human players, creating a stimulated economy that allows us to study the dynamics of receipt and reciprocation. We use RL to train a mechanism to maximise aggregate return to players. The RL mechanism discovers a redistributive policy that leads to a large but also more equal surplus. The mechanism outperforms baseline mechanisms by conditioning its generosity on available resources and temporarily sanctioning defectors. Examining the RL policy allows us to develop a similar but explainable mechanism that is more popular among players.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58043-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A canonical social dilemma arises when resources are allocated to people, who can either reciprocate with interest or keep the proceeds. The right resource allocation mechanisms can encourage levels of reciprocation that sustain the commons. Here, in an iterated multiplayer trust game, we use deep reinforcement learning (RL) to design a social planner that promotes sustainable contributions from human participants. We first trained neural networks to behave like human players, creating a stimulated economy that allows us to study the dynamics of receipt and reciprocation. We use RL to train a mechanism to maximise aggregate return to players. The RL mechanism discovers a redistributive policy that leads to a large but also more equal surplus. The mechanism outperforms baseline mechanisms by conditioning its generosity on available resources and temporarily sanctioning defectors. Examining the RL policy allows us to develop a similar but explainable mechanism that is more popular among players.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.